Какой рейтинг вас больше интересует?
|
Почему мы не можем лечить ВИЧ и рак2012-04-30 03:20:00 (читать в оригинале)(лингвистико-вероятностно-волновая версия) © Б.И.Бирштейн, А.М.Ярошенко, Гаряев П.П. Леонова Е.А. Тертышный Г.Г. Природа феноменов ВИЧ и рака. Сложности в трактовке. Сущность ВИЧ и рака лежит в той же области, что и сущность Жизни. Но мы до сих пор не понимаем главного в феномене Жизни – как она возникла на Земле и, каким образом она кодируется в хромосоомах. Существует ряд гипотез, каждая из которых, в лучшем случае, лишь часть правды. Отсюда теоретико-биологические трудности в трактовке ВИЧ и рака, а следовательно, и ошибки при их лечении. Оба болезнетворных начала оккупируют главное в любой биологической системе - ее генетический аппарат, то есть сумму “знаний” организма о самом себе. И вот парадокс, вроде бы о хромосомах и ДНК знаем достаточно. Онкогены обнаружены, геном ВИЧ изучен и как эти информационные структуры функционируют в хромосомах понятно. О работе генетического кода и рибосом, тоже вроде бы известно в деталях. Но этого почему-то оказывается недостаточно для разработки абсолютных методов борьбы с раком и ВИЧ. Худшая ложь - это полуправда. В нее привычно верится, особенно, если это полуправда “знания” о генетическом кодировании. Здесь все - неприступный бастион для критики и все догматизировано. Даже основное понятие, стратегическая схема генетического кодирования (ДНКà РНКà Белок) так и названо "Центральная Догма". Атака на эту догму до недавнего времени казалась бессмысленной, обреченной на провал. И как оказалось, напрасно. От того правильно ли мы понимаем генетическое кодирование зависит правильность или неточность стратегии изучения ВИЧ и рака, да и не только этих патологий. Первую брешь в этой догме пробило открытие ревертазы, и догма автоматически превратилась лишь в версию, которая звучит теперь существенно скромнее: ДНКÛ РНКà Белок. Но и эта модификация наших представлений о биосинтезе белков подвергается эрозии, поскольку она - лишь очередное приближение к истине, к пониманию языково-образного плюрализма генома как средству кодирования пространственно-временной структуры биосистем [32, 33]. Что мы хотим доказать? В данном исследовании мы развиваем свои идеи, цель которых не в окончательном разрушении так называемой “канонической” триплетной модели генетического кода, но в развитии и установлении ее точного места в системе знаний о принципах работы хромосом. Да, можно сказать, что триплетный код - истина. Но это истина такого рода, как если бы утверждали, что с помощью алфавита можно написать любое слово. Это верно. Но если мы пытаемся идти дальше, располагая только этим знанием, и доказываем, что с помощью алфавита можно конструировать правильные предложения, то это неверно. Потому, что для построения человеческой речи требуются законы мышления, грамматики и логики. А геном именно речеподобен и логичен, хотя эти фундаментальные черты - не единственный способ выражения его образно-смысловых конструкций. Более того, мы склонны принять идеи В.В.Налимова [43], которые приводят нас к идее, что геном обладает способностью к квазисознанию. Наши логика и модели – это попытка получить знания более высокого уровня о законах построения генетических текстов и иных знаковых структур генома, знания, которые находятся в начальной стадии развития. Основы их были заложены еще в 20-е годы русскими исследователями А.Г.Гурвичем [38], В.Н.Беклемишевым [29] и А.А.Любищевым [41]. Что же можно предложить в развитие и дополнение общепринятой теории генетического кодирования, и как это может помочь решить, как частный случай, проблему ВИЧ и рака? Условно, до полного доказательства, примем три положения, имеющие определенные теоретико-экспериментальные доказательства [8, 32, 33, 37].
Что делать дальше? Допустим, получены окончательные доказательства этих положений. Тогда проблема ВИЧ и рака представляется в совершенно ином интеллектуальном измерении. Попытаемся пояснить эти идеи и факты в теоретико-биологическом и медицинском осмыслении. Например, что такое вещественно-волновой дуализм ДНК и как он связан с многочисленными кодовыми функциями хромосом, существенно отличающимися от известного триплетного генетического кода? В определенном смысле геном выступает как сложный многоволновой лазер с перестраиваемыми частотами. Он излучает свет, гено-знаково промодулированный ДНК по амплитуде, фазе, частоте и поляризации. Более того, геном, вероятно, еще и разер, конвертирующий когерентные знаково поляризованные фотоны в телепортационно связанные с ними когерентные изоморфно знаково поляризованные радиоволны широкого спектра [37] (Гаряев П.П., Тертышный Г.Г., Леонова Е.А. и др. Радиоволновая спектроскопия локализованных фотонов: выход на квантово-нелокальные биоинформационные процессы. Датчики и системы (N9 стр.2-13 за 2000 год).). Геном является также и мобильной меняющейся мультиплексной квазиголограммой, способной при ее многоволновом автосчитывании собственными фотонными излучениями образовывать свето-радиоволновые генознаковые и иные регуляторные структуры [37]. Такие структуры являются реестрами электромагнитных разметочных схем (калибровочных полей) построения пространства-времени биосистем. И наконец, геном – это квазитекстовое образование, с элементами квантовой нелокальности, которое может само себя безинерционно "прочитывать" в миллиардах своих клеток и пользуется полученной при этом информацией как одним из руководств жизнедеятельности и одним из способов организации своей структуры [8, 37]. Наверное, эти идеи о новых информационных измерениях генома для многих биологов и генетиков, а тем более для медиков, воспринимаются сейчас как "китайская грамота". Однако, не для всех из них. Мышление такого рода, пустившее корни в 20 годах в России, набирает силу с резким ускорением в последнее десятилетие. Из этого с определенностью следует, что пока не поздно, необходимо менять стратегию поиска методов лечения ВИЧ и рака, поскольку традиционные попытки решить эти проблемы все более похожи на желание снять богатый урожай, засевая асфальт. Новая стратегия должна быть основана на фундаментальных исследованиях вещественно-волновых и квази-речевых атрибутов генома высших биосистем. Еще раз подчеркнем, что мы рассматриваем хромосомный континуум как знаковый лазерно-радиоволновой излучатель [8, 33, 37]. И этому есть прямые экспериментальные свидетельства. Например, для доказательства лазерных потенций генетических структур мы показали, что in vitro ДНК и хроматин может быть накачан как лазеро-активная среда с последующей лазерной генерацией света [28]. Если мы знаем эти существенные характеристики генома, то возникают естественные и конкретные вопросы – меняется ли знаковый характер лазерно-радиоволновой излучений хромосом при встраивании в них чужеродного генома ВИЧ? И что при этом происходит с "семантикой" излучений при транспозициях онкогенов или любых других мобильных полинуклетидных последовательностей, а такжже при B« Z и иных конформационных переходах в ДНК in vivo? Связано ли это с изменением квази- и голографических программ, то есть, создаются ли новые, изменяются ли старые, “стираются” ли они, и так далее? Динамичен ли при таких перестройках генома параметр поляризации излучений в семиотическом аспекте? Отражается ли все это на работе рибосом? Такие вопросы можно множить и далее. Ответ на любой из них может стать ключевым в трактовке природы ВИЧ и рака. Более подробно о теоретичеких построениях. Или другая проблема, также фундаментальная. Онкогены и геном ВИЧ, занимая определенные позиции в трехмерном пространстве хромосом клеток-хозяев, до какого-то времени не проявляют себя как патогенные факторы. В этом смысле поведение ВИЧ в организме инфицированного человека непредсказуемо. Инкубационный период ВИЧ может варьировать от недели до 10 лет. Считается, что есть определенный механизм индуцирования ВИЧ инфекции из латентного "спящего" состояния, но этот механизм не понят, а следовательно, упускается возможность заставить ВИЧ быть "спящим" в организме человека всегда. Организм и клетки их "не замечают" или даже, как в случае онкогенов, используют в благих целях как факторы роста. Почему они воспринимаемы адекватно (правильно) организмом до времени "X" и семантически перерождаются, вызывая управленческую катастрофу в клетках, после времени "X"? Следуя нашей логике, можно думать, что в патологических состояниях, равно как и в норме, работают, как минимум, четыре фактора - "голографичность" и "лингвистичность" генома, его фоновая (контектная) самоорганизация и его квантовая нелокальность. Эволюция биосистем создала их собственные генетические "тексты" и геном-биокомпьютер как квази-разумный "субъект". Он на своем уровне "читает и понимает" эти тексты. Чрезвычайно важно для обоснования этой элементарной "разумности" генома, что естественные (не существенно на каком языке) человеческие тексты и генетические "тексты" имеют сходные математико-лингвистические и энтропийно-статистические характеристики. Это относится, в частности, к такому понятию как фрактальность распределения плотности частот встречаемости букв (для генетических "текстов" буквы – это нуклеотиды) [21]. Еще одно подтверждение лингвистической трактовки кодовых функций генома получено американскими исследователями [20]. Работая с “кодирующими” и “некодирующими” последовательностями ДНК эукариот (в рамках старых представлений о генах), они пришли к выводу, сходному с нашим и противоречащему догме о том, что знаковые функции сосредоточены только в белок-шифрующих участках ДНК. Они применили метод статистического анализа естественных и музыкальных текстов, известный как закон Ципфа-Мандельброта, а также известный постулат избыточности текстовой информации Шеннона, рассчитываемый как энтропия текстов (относительно энтропии текстов и статистики распределения слов в текстах см., например, [1, 25, 27, 31]. В результате они получили, что “некодирующие” районы ДНК (спейсовые, интронные и другие) более схожи с естественными языками, чем “кодирующие”. Исходя из этого, авторы предполагают, что “некодирующие” последовательности генетических молекул являются основой для одного (или более) биологических языков. Кроме того, авторами был разработан статистический алгоритм поиска кодирующих последовательностей ДНК, который выявил, что белок-кодирующие участки обладают существенно меньшими дальнодействующими корреляциями по сравнению с зонами, разделяющими эти участки. Распределение ДНК-последовательностей оказалось настолько сложным, что использованные методы переставали удовлетворительно работать уже на длинах, превышающих 103 - 102 пар оснований. Распределение Ципфа-Мандельброта для частот встречаемости “слов” с числом нуклеотидов от 3 до 8 показало большее соответствие естественному языку некодирующих последовательностей по сравнению с кодирующими. Напомним, что кодирование авторы понимают как запись информации об аминокислотной последовательности, и только. И в этом парадокс, заставивший их заявить, что некодирующие регионы ДНК - это не просто “junk” (в переводе с английского - “мусор”), а языковые структуры, предназначенные для каких-то целей с неясным пока назначением. Дальнодействующие корреляции в этих структурах авторам также не понятны, хотя и обнаружена нарастающая сложность некодирующих последовательностей в эволюции биосистем. И это продемонстрировано на примере семейства генов тяжелой цепи миозина при переходе от эволюционно низких таксонов к высоким. Приведенные данные [20] полностью соответствует нашим идеям, высказанным ранее и независимо [32, 33], о том, что “некодирующие” последовательности ДНК, а это около 95 - 98 % генома, являются стратегическим информационным содержанием хромосом. Оно имеет материально-волновую природу и поэтому многомерно и выступает, в сущности, как голографическая ассоциативно-образная и одновременно как семантико-семиотическая программа эмбриологического начала, смыслового продолжения и логического конца любой биосистемы. Интуитивно поняв тупиковость старой модели генетического кодирования, авторы [20] с ностальгической грустью прощаются со старой и хорошо послужившей моделью генетического кода, не предлагая, правда, ничего взамен. Омонимо-синонимические неоднозначности генетических текстов. Для чего они нужны организму? Общим фундаментальным семиотико-семантическим свойством естественных и генетических текстов является их синонимии и омонимии. Это обеспечивает для хромосом, также как и для естественных текстов и речи, сверхизбыточность информации, ее многозначность, а поэтому приспособительную гибкость. Многозначность одних и тех же генетических текстов переходит в однозначность за счет эффекта меняющегося положения ДНК-последовательностей в пространстве генома посредством их транспозиций и/или транспозиций их окружения. А это аналог ситуаций в естественных текстах и речи, когда синонимо-омонимические неоднозначности частей семантического поля снимаются контекстом (фоном; фоновый притнцип см. в [44]). В традиционной триплетной модели генетического кода легко обнаруживается омонимии кодирующих дублетов. Значение таких омонимий до сих пор не понято и не оценено, за некоторым исключением [33, 35]. Необъяснимая проблема омонимий кодонов информационных РНК (mРНК) сразу возникла при создании триплетной модели шифровки аминокислот в процессах биосинтеза белков. И сразу стала миной замедленного действия, поскольку правильное объяснение биологического (информационного) смысла таких омонимий автоматически приводит к необходимости существенного уточнения триплетной модели, если не сказать полного ее пересмотра. В чем проявляются омонимии кодонов? Ряд различающихся аминокислот кодируются одинаковыми дублетами в составе кодонов mРНК, а третьи нуклеотиды в кодонах могут меняться хаотически, они "воблируют" (англ. "wobble" – качание) и могут быть любыми из 4-х канонических. Вследствие этого они не коррелируют с кодируемыми аминокислотами [3, 11]. По этой причине возникает семантическая неоднозначность выбора рибосомой антикодонов транспортных РНК (tРНК), несущих аминокислоты. Например, каждый из синонимических кодонов стандартного кода высших биосистем AGT и AGC кодирует серин, а каждый из синонимических кодонов AGA и AGG кодирует аргинин. Поскольку третьи нуклеотиды кодонов mРНК в сочетании со знаковым дублетом не имеют точных аминокислотных коррелятов, а первые два знаковых нуклеотида кодонов одинаковы, но при этом кодируют разные аминокислоты, возникает неоднозначность в выборе антикодонов tРНК. Иными словами, рибосома с одинаковой вероятностью может выбрать и сериновую, и аргининовую tРНК, что может привести к синтезу аномальных белков. В действительности же таких ошибок не происходит, точность белкового биосинтеза чрезвычайно высока. Только в некоторых метаболически аномальных ситуациях происходят ошибки (наличие некоторых антибиотиков, аминокислотный дефицит и др.). В норме рибосома каким-то образом делает правильный выбор антикодонов tРНК из омонимичных дублетов. Мы полагаем, что правильный выбор из дуплетных антикодонов-омонимов реализуется по резонансно-волновым и контекстным (ассоциативным, голографическим) и/или так называемым “фоновым механизмам”. Омонимичность аминокислотного кода может быть преодолена точно так же, как это происходит в естественных языках - путем помещения омонима, как части, в целое, то есть в законченную фразу, контекст которой дешифрует омоним и присваивает ему единственное значение, создавая однозначность. Поэтому mРНК в качестве своего рода “фразы” или “предложения” должна работать в белковом синтезе как функциональное кодирующее целое (нелокально), задающее последовательность аминокислот на уровне ассоциатов аминоацилированных tРНК, которые комплементарно взаимодействуют со всей молекулой mРНК. Макростерические несоответствия между mРНК- и tРНК- континуумами могут сниматься за счет конформационной лабильности макромолекул. При этом роль А-Р участков рибосомы заключается в акцепции таких ассоциатов - предшественников белка с последующей энзиматической сшивкой аминокислот в пептидную цепь. В этом случае будет происходить контекстно-ориентированный однозначный выбор и снятие омонимии дуплет-антикодонов. Можно предсказать в связи с этим, что взаимодействие аминоацилированных-tРНК с mРНК носит коллективный фазовый характер по типу реассоциации (“отжига”) однотяжных ДНК при понижении температуры после “плавления” нативного полинуклеотида. Существуют ли экспериментальные данные, которые можно было бы трактовать в таком духе? Их немало и они сведены в обзорно-аналитическом исследовании [45]. Приведем некоторые из них. Известно, что правильность узнавания молекулами tРНК терминирующих кодонов зависит от их контекстного окружения (подтверждение наших теоретических построений), в частности, от наличия за стоповым кодоном уридина. Так, в работе [9] показано следующее. Вставка строки из девяти редко используемых CUA-лейциновых кодонов после 13-го в составе 313 кодонов тестируемой mРНК сильно ингибируют их трансляцию без явного влияния на трансляцию других mРНК, содержащих CUA-кодоны. Здесь явно проявляются контекстные ориентации трансляции. Хорошо просматривается стратегическая линия влияния строго определенных и далеко расположенных от места образования пептидной связи кодоновых вставок в mРНК на включение или не включение определенной аминокислоты в состав синтезируемого белка. Это дистантное влияние, связанное с континуальностью белкового синтеза (также пример нелокальности функций генетического аппарата), когда mРНК воспринимается белок-синтезирующим аппаратом не только по частям (понуклеотидно, локально), но и как целое (нелокально). Однако, в в цитируемой работе этот ключевой феномен просто констатируется, оставаясь для исследователей непонятным и, видимо поэтому, даже не обсуждается. Таких работ становится все больше. В той, что мы обсуждаем, ссылаются, к примеру, на полдюжины аналогичных результатов, где трактовка в этом смысле также затруднена. Причиной этому, понятно, является несовершенство модели триплетного генетического кода. Модель не точна еще и потому, что существуют необычные протяженные (swollen) антикодоны. Когда они вовлечены в синтез белка, в А-сайте рибосомы участвуют не три, а большее количество пар оснований [45]. Это означает, что догматический постулат триплетности кода нарушается и в этом случае. В [45] приводятся результаты исследований по взаимодействию tРНК-tРНК на рибосоме, и это также полностью подтверждает нашу идею об ассоциате (континууме) нагруженных аминокислотами tРНК как предшественнике белка. В [45] высказана существенная мысль, близкая нам, что эффект действия контекста mРНК на однозначное включение аминокислот в пептид является отражением неких фундаментальных, и пока плохо изученных, закономерностей декодирования генетической информации в процессе белкового синтеза. Напомним, что генетическая информация о синтезе белков занимает всего около 1% объема хромосом. 99% заняты программами существенно более высокого уровня. Прионы – последний удар по центральной догме молекулярной биологии. Как видим, ранние представления о генетическом коде и знаковой работе белок-синтезирующего аппарата носят упрощенный характер. Возможно, последним аргументом в пользу окончательного пересмотра центральной догмы молекулярной биологии служит феномен прионов. Прионы – это низкомолекулярные паразитические белки (PrPsc), поражающие головной мозг животных (бешенство коров) и человека (болезнь Альтсгеймера, синдром Крейцфельда-Якоба и другие). Необъяснимой особенностью прионов является их вирусоподобная штаммоспецифичность. Но штаммоспецифичность присуща только микроорганизмам или вирусам, которые располагают генетическим аппаратом. Вместе с тем считается, что геном у прионов отсутствует, поскольку все попытки обнаружить в составе прионов хотя бы следы ДНК или РНК заканчивались неудачей. Возникает сильное противоречие, которое в очередной раз ставит под сомнение центральную догму молекулярной биологии: генома у прионов нет, а генетические признаки налицо. Не в силах объяснить это, “спасая” центральную догму, все-таки предполагают, что остатки ДНК или РНК прячутся в каких-то складках молекул прионов [10]. Однако, десятилетия исследований прионов, увенчавшиеся нобелевской премией 1997 года Стенли Прузинеру за исследования в этой области, показали абсолютно точное отсутствие в их составе нуклеиновых кислот, а следовательно и генома [23]. Как выйти из этого противоречия? Если придерживаться центральной догмы, то это невозможно. Отказавшись от нее, мы можем представить себе следующий сценарий биогенеза прионов [34]. Главной знаковой фигурой здесь выступает "виртуальный геном прионов", то есть геном временный, взятый заимообразно у клеток-хозяев. Точнее можно сказать, что это белок-синтезирующий аппарат клеток-хозяев. Похоже, прионы в качестве одного из способов размножения сохранили палеогенетический путь, позволяющий им в ряде случаев не пользоваться генами, кодирующими их в хромосомах, а саморазмножаться иным путем, игнорируя центральную догму молекулярной биологии и генетики. Для клетки, чтобы синтезировать прионы, обращаться к их генам - это, хотя и прогрессивный, но организационно и энергетически трудный путь. Прионы могут поступать проще. Мы предполагаем, что NH-группы пептидных связей PrPsc могут реагировать с ОН-группами остатков рибозы акцепторных CCA-последовательностей соответствующих tРНК. В ходе гипотетических ферментативных реакций возникающий поли-tРНК-континуум, колинеарный PrPsc, попарно пространственно сближает антикодоны, образуя ковалентно дискретное “подобие информационной РНК” (пиРНК). Это этап почти обратный синтезу белка на рибосоме. Вероятно, он проходит на А- , Р-сайтах рибосомы. Затем идет синтез РНК на пиРНК. Для этого необходима соответствующая РНК-полимераза, способная работать с ковалентно-дискретной матрицей пиРНК. В этом и заключается "заимообразность" пользования белок-синтезирующим аппаратом клеток-хозяев на время размножения прионов. Такая временность создает иллюзию отсутствия у них генетического аппарата. При этом пептидные цепи прионов служат матрицами, на которых попарно на А-Р участках рибосом, выстраивается поли-tРНК-континуум, образуя дискретные полиантикодоны. Последние, объединяясь попарно, либо сразу служат матрицей для РНК-зависимого синтеза mРНК прионов, либо (в другом варианте) полиантикодоны за счет специфического сплайсинга вырезаются с последующим лигированием в ковалентно непрерывную матрицу mРНК прионов. Далее mРНК прионов на рибосоме полимеризует сами прионы. Это означает, что рибосома работает в обратном направлении и является при этом "прион-полиантикодон-зависимой mРНК полимеразой". И соответтсвенно, в нарушении догмы, информация идет от белка к РНК. Тогда схема догмы окончательно видоизменяется: ДНКÛ РНКÛ Белок. Тогда это уже не догма, а просто рабочая схема, с которой надо работать, уточняя и развивая ее. Штаммоспецифичность прионов, при таком взгляде на их биогенез, объясняется особенностями обратной работы рибосом, временно рекрутируемых при синтезе каждого из штаммов прионов. А эти особенности определяются таксономическим положением биосистем, продуцирующих прионы. Вернемся вновь к пока еще общепринятым основным положениям модели генетического кода: он является триплетным, неперекрывающимся, вырожденным, не имеет “запятых”, т.е. кодоны ничем не отделены друг от друга. Поток информации идет от ДНК к РНК и далее к белку. И наконец, код универсален. Что осталось от этих положений? Фактически ничего. В самом деле, код, видимо, является двух-, трех-, четырех- ... n-буквенным как фрактальное и гетеромультиплетное образование, кодирующее не только отдельные белки, но и функционально связанные ассоциаты белков. Он перекрывающийся за счет сдвигов рамок считывания рибосом. Он имеет запятые, поскольку гетерокодоны могут быть отделены друг от друга последовательностями с иными функциями, в том числе с функциями пунктуации. Код не универсален - в 14 случаях он отличен от стандартного кода высших биосистем. Эти случаи относятся к митохондриальному, дрожжевому, микоплазменному, трематодному и другим кодам низших организмов [5, 6]. И последнее: белок может служить матрицей для РНК, как мы видим на примере прионов. Как понимать реальный генетический, а точнее белковый, код с учетом приведенных противоречий и предлагаемой нами логики рассуждений? Можно постулировать качественную, упрощенную, первичную версию вещественно-волнового контроля за порядком выстраивания аминокислот, задаваемым ассоциатами аминоацилированных tРНК как предшественниками белков. Приняв такую версию, легче понять работу белкового кода как одной из множества иерархических программ вещественно-волновой организации биосистемы. В этом смысле такой код - первый этап хромосомных планов построения биосистемы, поскольку язык генома многомерен, плюралистичен и не исчерпывается задачей синтеза протеинов. Основные положения предлагаемой ориентировочной модели вещественно-волновых знаковых процессов при биосинтезе белков сводятся к следующему:
Таким образом, роль mРНК знаково многовекторна и дуалистична. Эта молекула, как и ДНК, в эволюции знаменует собой узловое событие - взаимодополняющее синергичное единство вещественной и волновой геноинформации. Неоднозначность вещественного кодирования снимается прецезионностью волнового, которое реализуется, вероятно, по механизмам коллективных резонансов и лазерно-голографических (ассоциативных, контекстно-фоновых) эффектов в клеточно-тканевом континууме. Скачок к более развитому волновому регулированию трансляции РНК® Белок сопровождается частичным или полным отказом от правила канонического спаривания аденина с урацилом (тимином) и гуанина с цитозином, свойственного эволюционно ранним и более простым этапам репликации ДНК и транскрипции РНК. Такой отказ информационно необходим, неизбежен и энергетически предпочтителен на уровне высших биосистем. Еще раз подчеркнем, что контекстные ассоциативно-голографические механизмы работы белок-синтезирующей системы организмов теснейшим образом связаны с так называемым “фоновым принципом” [44], а также, вероятно, с многовекторной и многосмысловой логикой управления сложными системами (кенограмматика Герхарда Томаса) [26]. С этой позиции макроконтексты пре-информационных и контексты информационных РНК можно рассматривать как фон, который в данной ситуации и в данной трактовке является "шумовым источником информации". Это обеспечивает резкое усиление сигнала, по которому происходит точный выбор (волновое распознавание) одной из двух омонимичных аминоацилированных tРНК, одна и только одна из которых должна войти в точные белковые “фразу” или “слово”. Этот выбор возможен после выделения когерентной составляющей в форме повторов одних и тех же "осмыслений" (распознаваний) рибосомой одного из двух одинаковых дублетов в кодонах. Ситуацию можно пояснить на простом примере. Скажем, в предложении надо выбрать одно из двух слов (аналогов кодонов с дублетами-омонимами). Эти слова - “суд” и “сук”. Ясно, что выбор зависит от целого предложения, от контекста, который выступает как фон, позволяющий выделить сигнал - нужное слово. Если предложение звучит “я увидел толстый сук на дереве”, то замена здесь слова “сук” на “суд” будет равносильна введению шума и потере сигнала. Вероятно, аналогична роль пре-информационных РНК и интронов - это различные уровни контекстов, которые должны быть каким-то образом “прочитаны” и “осмыслены” живой клеткой и ее рибосомным аппаратом для принятия точного решения по выбору антикодона tРНК в ситуации омонимии. Аппаратом континуального (нелокального) “чтения” контекстных РНК-последовательностей как целого может выступать многоликое семейство солитонов - оптических, акустических, конформационных, вращательно-колебательных и иных, возбуждаемых в полинуклеотиде. Функции таких солитонов могут выступать как способы накопления семантической информации о РНК-контекстах и следующей за этим смысловых регуляций кодон-антикодоновых знаковых взаимоотношений. Смысловые оценки при этом проводятся геномами-биокомпьютерами клеток. В качестве одного из способов континуального прочтения полинуклеотидов можно представить именно солитонный, сканирующий последовательность РНК. Например солитоны бегущих крутильных колебаний нуклеотидов на сахаро-фосфатной оси, физико-математически рассмотренный нами для однотяжных РНК-подобных участков ДНК [30, 36]. Такие солитоны реагируют на изменения последовательностей нуклеотидов модуляциями своей динамики, которая приобретает черты знаковости и может, вероятно, передаваться дистантно, то есть на расстояния, существенно превышающие длину водородных связей. Без дальней (волновой, континуальной) миграции сигнала о целом, то есть о пре-mРНК-mРНК-последовательностях, невозможна реализация ассоциативно-контекстных регуляций синтеза белков. Для этого необходима волновая способность солитонов (а также и голографической памяти) работать не только с частями, но и с целым. Такая континуальность, или что одно и то же, нелокальность, обеспечивает узнавание и правильный выбор рибосомным аппаратом истинного кодона из двух дублет-омонимичных, кодона псевдо-зашумленного фоном (контекстом).
|
Популярные за сутки
|
Загрузка...
BlogRider.ru не имеет отношения к публикуемым в записях блогов материалам. Все записи
взяты из открытых общедоступных источников и являются собственностью их авторов.
взяты из открытых общедоступных источников и являются собственностью их авторов.