Сегодня 26 апреля, пятница ГлавнаяНовостиО проектеЛичный кабинетПомощьКонтакты Сделать стартовойКарта сайтаНаписать администрации
Поиск по сайту
 
Ваше мнение
Какой рейтинг вас больше интересует?
 
 
 
 
 
Проголосовало: 7272
Кнопка
BlogRider.ru - Каталог блогов Рунета
получить код
Электрика в Вашем доме
Электрика в Вашем доме
Голосов: 1
Адрес блога: http://electro-servis.blogspot.com/
Добавлен: 2010-09-17 09:39:37 блограйдером energo_polis
 

electro servis 2012

2012-03-05 03:31:00 (читать в оригинале)

una emprsa de servicio dedicada a la climatisacion 


aire acondicionados . instalaciones conla mas alta calidad del mercado
44850905    1536021474

ЗАЗЕМЛЕНИЕ В ГОРОДСКОЙ КВАРТИРЕ

2011-07-14 22:13:00 (читать в оригинале)

В крупных населенных пунктах источником электроснабжения зданий служат городские трансформаторные подстанции (ТП), в которых используется система заземления TN. То есть осуществляется непосредственное присоединение нейтрали (общей точки обмоток трансформаторов) источника питания к установленной тут же системе заземления, то есть нейтраль источника глухозаземлённая (первая буква Т (Тerra - земля) в аббревиатуре), а заземление открытых проводящих частей электроустановок и электроприборов потребителей осуществляется при помощи нулевого защитного проводника, соединенного с той же системой заземления (вторая буква N (Neutre - нулевой) в аббревиатуре). То есть от ТП к зданию идут предназначенные для питания устройств фазные проводники (L), нулевой рабочий проводник (N) и нулевой защитный проводник (PE - Protective Earthing).



Как по фазным, так и по нулевому рабочему проводу течет электрический ток, различие между ними в том, что фазные провода имеет опасный для жизни потенциал относительно земли, а нулевой рабочий – заземлен на ТП. В бывшем СССР, а потом и в независимой Украине основной является система электроснабжения, когда от ТП к вводно-распределительному устройству (ВРУ) здания идет совмещенный нулевой защитный и рабочий проводник (РЕN).

TN-C

В многоквартирных домах, построенных еще в прошлом, ХХ веке, применяется система заземления TN-C, в которой нулевые защитный и рабочий проводники объединены в один изолированный провод по всей длине (Combine - объединять). То есть в здании вся проводка имеет или два или четыре провода (при трехфазной схеме) и в розетках отсутствуют контакты заземления. Подобное заземление часто называется занулением. Главным достоинством такой схемы в свое время являлись простота и дешевизна, но при этом установленные на линиях защитные устройства срабатывают только в случае короткого замыкания. По советским нормативам на квартиру полагалось потребляемая мощность не более 1100 Вт, которая в сегодняшних реалиях превышается в несколько раз (стиральная машина 1,5 кВт + электрочайник 0,7 кВт + телевизор, холодильник, компьютер, настольная лампа 1 кВт + освещение 0,5 кВт = по минимуму 3,7 кВт). При этом имеет место низкая пожаробезопасность сетей с системой заземления TN-C.
В современной электронной технике используются импульсные блоки питания, имеющие на входе симметричный фильтр импульсных помех с присоединенной к корпусу средней точки, что приводит к выносу напряжения в 110 В на корпус. При использовании системы заземления TN-C устройств защитного отключения (УЗО) является неработоспособным, поэтому нет защиты людей от поражения электрическим током. Учет указанных выше недостатков привел к тому, что в действующей с 2006 года на территории Украины новой редакции ПУЭ принята система заземления TN-C-S (Separe - разделять), а применение TN-C запрещено.

TN-C-S

Система TN-C-S является модернизацией описанной выше схемы, в которой РЕN во вводно-распределительном устройстве разделяется на нулевой защитный РЕ и нулевой рабочий N проводники. В этом случае идущая к розеткам проводка выполняется тремя или пятью проводами (при трехфазной схеме). Подобное заземление в развитых странах начало активно внедрятся с 1960-х годов и сегодня широко используется в Великобритании, Польше, Венгрии, Чехии, Словакии, Западной Австрии, Швейцарии, Германии, в странах Северной Европы (в частности, в Швейцарии и Финляндии) и США.
Для повышения безопасности защитный РЕ провод повторно заземляется на вводе в здание и объединяется неразрывными проводниками со всеми металлическими конструкциями: трубами, арматурой бетонных плит и т.п. В отличие от системы TN-C безопасность теперь может обеспечиваться не только защитой от сверхтоков (автоматическими выключателями), но и применением УЗО, быстродействие которых гарантирует высокий уровень защиты человека при каких либо утечках тока (например, при пробое изоляции). Недостатком подобной схемы заземления, как и в предыдущем варианте, является обрыв на участке объединенного РЕN проводника (так называемое отгорание нуля), при котором на подключенных к защитному РЕ проводу устройствах появляется фазовый потенциал.
При проектировании системы заземления загородного дома, идущий от ТП объединенный РЕN проводник разделяют на нулевой защитный РЕ и нулевой рабочий N для организации схемы TN-C-S на вводе в здание или на ближайшей опоре с обязательным повторным заземлением.

TN-S

Самой безопасной из TN систем заземления является широко распространенная в Великобритании схема TN-S, при которой нулевой защитный РЕ и нулевой рабочий N проводники разъединены по всей длине начиная от ТП. Использование в такой системе УЗО позволяет гарантировать для находящихся в помещении людей высокую безопасность при всех авариях на электролинии. Недостатком такой системы является необходимость модернизации электросетей на всей их протяженности, что требует значительных капиталовложений.

TT

ДБН В.2.5-27-2006 допускают использование в индивидуальных частных домах системы заземления ТТ с обязательной установкой УЗО. При такой схеме РЕN проводник не разделяется и используется только в качестве рабочего нуля, а для заземления используется заземляющее устройство, независимое от заземлителя нейтрали ТП. Подобная организация электроснабжения является на сегодняшний день одной из наиболее безопасных и широко распространена в странах южной Европы – Италии, Испании, Португалии, Греции, а также в Японии.



ЗАЗЕМЛЕНИЕ В ВАШЕМ ДОМЕ

2011-07-14 21:56:00 (читать в оригинале)


Заботясь о комфорте на рабочем месте или уюте домашнего очага, никто не забывает об электроснабжении, но при этом вопрос установки системы заземления, как правило, оказывается в тени акцентированного внимания к установке светильников, розеток, выключателей и даже электромагнитного излучения проводки. Причина такой забывчивости кроется в том, что в представлении большинства людей заземление – это вкопанный в землю возле многоэтажного дома штырь, соединенный с тянущимся на крышу проводом или торчащие в евророзетке два металлических «хвостика». А ведь при разрушении изоляции электрооборудования или пробое на его корпус фазного проводника практически единственным щитом на пути поражения электрическим током будет именно заземление.

Понятие «заземление» в электротехнике означает преднамеренное присоединение либо точки электросети или электрооборудования к заземляющему устройству. Последнее состоит из заземлителя (обладающий высокой электропроводностью и находящийся в электроконтакте с землей конструктивный элемент) и соединяющего с ним электрооборудование заземляющего проводника. В представлении многих жители многоквартирных домов прочно укоренилось убеждение, что трубы водопроводных коммуникаций всегда имеют электрический контакт с землей, забывая о модных нынче пластиковых диэлектрических трубах. Накинув в подобной ситуации заземляющий проводник на водопроводную трубу, такой «продвинутый» жилец создает опасность для находящихся во всех помещениях, через которые проходит заизолированный участок трубы. Например, если в ванной на заземленной таким образом стиральной машине возникнет пробой на корпус, то в соседней квартире возникнет разность потенциалов между водопроводным краном и канализационной трубой и если принимающий ванну сосед дотронется до этого крана, ток через его тело, с учетом низкого электросопротивления мокрой кожи, может стать опасным для жизни. Несмотря на явную некомпетентность, а при несчастном случае и уголовную ответственность, подобные советы по обустройству заземления присутствуют на сайтах компаний рядом с фотокопиями лицензий на проведение электромонтажных работ. Поэтому нужно уделять пристальное внимание вопросу по организации системы заземления, поскольку некомпетентность при его установке может быть более опасной, чем полное отсутствие.

Тип системы заземления зависит от организации подачи электроснабжения на объекте. Большинство потребителей в больших и маленьких городах и поселках подключены к трансформаторным подстанциям (ТП) и заземления электрооборудования в этом случае осуществляется при помощи идущего от ТП нулевого защитного проводника, который может быть как отдельным, так совмещенным с рабочим нулевым проводником. Различие в организации заземления определяет количество проводов в электропроводке здания. В загородном доме, как правило, проектируют и устанавливают индивидуальную систему заземления, используя различные допустимые стандартом материалы и конфигурации заземлителя.


АКТИВНАЯ МОЛНИЕЗАЩИТА

2011-07-14 21:43:00 (читать в оригинале)

Со времен Б. Франклина классическая система молниезащиты надежно охраняет возведенные человеком сооружения и постройки от разрушительного воздействия атмосферного электричества. Не одно поколение ученых и инженеров заложили прочный фундамент стандартов, нормативов и правил для ее проектирования и установки. Но научно-технический прогресс не стоит на месте и вполне естественно, что усовершенствования на основе новых достижений науки касаются и молниезащиты. Главное в этом случае, чтобы эти новаторские идеи опирались на реальные, а не теоретические утверждения. Это становится особенно актуальным в связи с ростом количества специализирующихся на установке молниезащиты фирм, которые начали активную рекламу систем упреждающей стримерной эмиссии - ESE (Early Streamer Emission System) или так называемой активной молниезащиты.


При презентации абстрактной модели все выглядит безупречно: в окрестности острия ESE-молниеприемника происходит ионизация воздуха, что при приближении лидера молнии способствует формированию встречного стримера за меньший по длительности промежуток времени, чем при использовании классической (пассивной) молниезащиты. Теория предсказывает, что результатом этой более быстрой реакции является увеличение площади зоны, которую защищает подобное устройство. Таким образом, например, установка одного ESE-молниеприемника высотой в шесть метров берет под свою защиту все объекты в радиусе 40 метров и требует только одного токоотвода для соединения с системой заземления, а установки опусков через 20 метров по всему периметру строения. Естественно, что отсутствие молниеприемной сетки крыше и всего один токоотвод (который гораздо легче замаскировать) имеют положительное влияние на степень изменения внешнегооблика защищаемого здания, особенно если оно является памятником архитектуры.

Однако как всегда при применении абстрактной модели в реальных природных условиях появляется рад фактов, вынуждающий или подкорректировать модель или вовсе от нее отказаться. Не стала исключением и активная молниезащита. Для начала следует указать на отсутствие методики для расчета площади зон защиты, основанной на применении законов физики. Вместо этого производители рекомендуют к использованию готовые таблицы. Вторым интересным фактом является реакция французской промышленной ассоциации GIMELEC, активно пропагандирующей ESE-молниеприемники, на требование от ICLP (International Conference on Lightning Protection) предоставить статистические данные по эффективности новой системы при эксплуатации на реальных объектах. Первые практические результаты в подтверждение неэффективности применения ESE-систем официально были представлены на форуме Ассоциации инженеров-консультантов Малайзии (АСЕМ) в 2004 году. В 2005 году этой проблемой озаботилась уже ICLP - авторитетная научно-техническая организация, которая курирует вопросы практического применения средств молниезащиты. В 2008 году ICLP направила уже упоминавшийся запрос к GIMELEC, предполагая заслушать доклад французов на проводимой в шведском городе Упсала (Uppsala, Sweden) международной конференции, а в ответ получила от GIMELEC угрозу подачей в суд иска за нанесения ущерба деловой репутации. В 2009 году своим постановлением постановление D134/037 точку в этом вопросе попытался поставить Европейский комитет электротехнической стандартизации (CENELEC), потребовав у стран Европы привести свои внутренние стандарты по молниезащите в соответствие с требованиями EN 62305 (IEC-62305). Французам сделать это со своим NFC 17-102, текст которого, по сути, представляет собой спецификацию системы упреждающей стримерной эмиссии, до настоящего времени так и не удалось. Не порадовали сторонников применения ESE-систем и систематические лабораторные исследования, проведенные в Малазии и Польше, которые не обнаружили существенного различия при генерации встречного стримера у активного молниеприемника и классического стержня Франклина.

Напор фирмы по установке активной молниезащиты легко понять – проектировать гораздо легче, монтаж проще и быстрее, а окупаемость гораздо выше (ESE-молниеприемник дороже обычного в 40-60 раз). При этом забывают упомянуть, что даже в тех странах старого континента, где использование активной молниезащиты официально разрешено (Франция, Турция, Чехия, Польша, Испания), есть меленькое дополнение к нормативам – только такой же высоты, как и рассчитанный по стандартной методике классический стержень Франклина. За океаном, в США 13 сентября 2005 года решением федерального суда штата Аризона две крупных фирм по установке активной молниезащиты National Lightning Protection Corporation of Denver и Heary Brothers Lightning Protection/Lightning Preventor of America были уличены в недобросовестной рекламе – приводимые ими характеристики ESE-систем были признаны не соответствующими действительности, а дальнейшая реклама подобного рода запрещена. Поэтому нужно помнить, что даже установка ESE-молниеприемников на таких известных объектах как аэропорт имени Шарля де Голля, Нотр-Дам де Пари, штаб-квартира Renault, Красная крепость (Дели, Индия), небоскребе Central Plaza в Гонконге, отель Найятт, (Денвер, США) и т.д. не отрицают того факта, что при установке активной молниезащиты Вы платите немалые деньги за классический стержневой молниеприемник.




МОЛНИЕЗАЩИТА ВНУТРИ ЗДАНИЯ

2011-07-14 21:36:00 (читать в оригинале)

Установленная на здании система внешней молниезащиты при квалифицированном расчете и правильном монтаже с успехом справляется с обязанностями по защите строения от разрушения и пожара, а пребывающих внутри людей – от поражения электрическим током. Но вот защитить расположенную внутри дома «умную» электронику от вызванного разрядом молнии электромагнитного воздействия она уже не в состоянии. Человеком подобного рода влияние не воспринимается, а для современных электроприборов, напичканных блоками с интегральными схемами управления, вторичные проявления разряда молнии могут стать смертельным. Этими агентами небесной «аль-каиды» являются занос высокого потенциала и наведенное напряжение, а их основное оружие – импульсное перенапряжение.

Занос высокого потенциала «проникает» в строение по протяженным токопроводящим коммуникациям (подземным, наземным и надземным трубопроводам (канализация, газ, водопровод), кабелям (воздушным линиям электропередачи, сетям телефона, радио, сигнализации и т.д.), воздухопроводам вентиляции и климатических установок и т.п.). Обусловлено это тем, что попавший в землю разряд не может моментально пропасть в одной точке, а начинает растекаться по направлениям с наименьшим сопротивлением и, повстречав на своем пути ведущие в дом токопроводящие коммуникации, заносится по ним внутрь строения. Слабым местом в этом отношении оказывается даже внешняя молниезащита, которая закорачивает токи разряда молнии (в 90 % разрядов сила тока около 20000А, но для 10% ударов она превышает 200000 А) на землю, что существенно повышает потенциал земли вблизи здания. Эффект наведенное напряжение обусловлено законом электромагнитной индукции – протекающий в момент разряда по каналу молнии ток в десятки килоампер индуцирует ток в токопроводящих контурах внутри здания. Радиус действия данных вторичных проявлений разряда молнии составляет порядка 2 км, а при определенных условиях и 5 км. Для защиты от вредоносного воздействия этих факторов применяются система уравнивания потенциалов и устройства защиты от импульсных перенапряжений (УЗИП).

Задача УЗИП – ограничить возникающие в сети перенапряжения до приемлемых для электрооборудования значений. Причем сюда входят и коммутационные перенапряжения, возникающие при включении/выключении сварочного оборудования, электродвигателей, трансформаторов, освещения и т.п., обрыв нулевого проводника на питающей подстанции. Для создания системы адекватных защитных устройств применяется двухимпульсная модель перенапряжений, вызванных разрядом молнии. Прямое попадание молнии в систему внешней молниезащиты или в воздушную линию электропередач (в месте удара и на удалении десятков метров от него) моделируется импульсом тока с длительностью фронта 10 мкс и длительностью спада на полувысоте 350 мкс (сокращенно 10/350 мкс). Расчетная амплитуда импульса при прямом попадании во внешнюю молниезащиту – 200 кА, а в линию электропередач – 100 кА.


Непрямой затухающий удар молнии и коммутационные перенапряжения моделируются импульсом амплитудой 10кА, длительностью фронта 8 мкс, и длительностью спада на полувысоте 20 мкс (сокращенно 8/20 мкс).

 


При выборе УЗИП для линий электропитания, считается, что эти оставшиеся 50% проходят исключительно по электросетям. Наиболее эффективной на сегодня признанна зонная концепция защиты от импульсных перенапряжений, суть которой состоит в каскадном снижении перенапряжения на пути до защищаемого электрооборудования. Для этого электросеть здания разделяется на зоны молниезащиты LPZ (Lightning Protection Zone) и на переходе между ними устанавливается соответствующее УЗИП, которые в зависимости от места установки и рабочих параметров согласно стандарту IEC-61643-12 (2002) делятся на классы I, II и III. В немецком стандарте E DIN VDE 0675-6 (1989-11) этим классам соответствуют B, C, D, но сегодня ведущие производители УЗИП практически не применяют буквенных обозначений. Применяемые УЗИП должны обеспечивать снижение амплитуды импульса перенапряжения до величины, которую в состоянии выдержать электрооборудование. Так для малочувствительных устройств (телевизор, магнитофон, DVD-плеер и т.п.) она составляет 1,5 – 1,8 кВ, для чувствительных, таких как компьютер, - 1,0 – 1,5 кВ, для сверхчувствительного управляющего и коммуникационного оборудования – 0,5 – 1,0 кВ.

УЗИП класса I (типа 1) по принципу действия являются коммутирующими (в отсутствие импульса перенапряжения сохраняют высокое полное сопротивление, которое в ответ на скачок напряжения изменяется на низкое за время порядка 25 нс) и называются разрядниками. Эти устройства, предназначенные для защиты от импульса 10/350 мкс, устанавливаются на переходе зон LPZ 0 (А) – LPZ 1 (В), то есть на вводе в здание в главном распределительном щите, рассчитаны на максимальный импульсный ток 40 – 65 кА. Они обеспечивают уровень защитного напряжения от 4,0 до 0,9 кВ. Дальнейшее снижение уровня пропускаемого напряжения, то есть переход зон LPZ 1 (В) – LPZ 2 (С), обеспечивается УЗИП класса II (типа 2), которые предназначены для защиты от импульса 8/20 мкс и представляют собой варисторные разрядники (сопротивление резко падает при превышении определенного напряжения), рассчитанные на максимальный импульсный ток 2 – 40 кА и обеспечивают уровень защитного напряжения от 2,5 кВ до 450 В. Устанавливаются эти УЗИП в силовые щиты (как правило, на 20 кА) и этажные щиты (как правило, на 10 кА) и согласовываются с разрядниками класса I. Существует еще и зона защиты LPZ 3 (D), на переходе в которую устанавливают УЗИП класса III (типа 3), предназначенные для защиты высокочувствительного оборудования от импульсов остаточных перенапряжений типа 1,2/50 мкс. Это довольно дорогое «удовольствие» и в частных домах в нем необходимости практически никогда не возникает.


Страницы: 1 2 3 

 


Самый-самый блог
Блогер Рыбалка
Рыбалка
по среднему баллу (5.00) в категории «Спорт»


Загрузка...Загрузка...
BlogRider.ru не имеет отношения к публикуемым в записях блогов материалам. Все записи
взяты из открытых общедоступных источников и являются собственностью их авторов.