Какой рейтинг вас больше интересует?
|
В Хайфе2014-07-11 00:17:02 (читать в оригинале)В Хайфе до 21-го июля. Вещаю в Тель-Авиве (13 и 15 июля, 13:00-14:30, Schreiber 008), доклады: "Symplectic packing on simple Kahler manifolds, hyperkahler manifolds and tori", "Hypercomplex manifolds of quaternionic dimension 2 and HKT-structures," в Вейцманне 17-го, 14:00, "Kahler threefolds without subvarieties." Абстракты выступлений: hyperkahler manifolds and tori", Let $M$ be a compact symplectic manifold of volume $V$. We say that $M$ admits a full symplectic packing if for any collection $S$ of symplectic balls of total volume less than $V$, $S$ admits a symplectic embedding to $M$. In 1994, McDuff and Polterovich proved that symplectic packings of Kahler manifolds can be characterized in terms of Kahler cones of their blow-ups. When $M$ is a Kahler manifold which is not a union of its proper subvarieties (such a manifold is called simple) these Kahler cones can be described explicitly using Demailly and Paun structure theorem for Kahler cones. It follows that any simple Kahler manifold admits a full symplectic packing. This is used to show that compact tori and hyperkahler manifolds with irrational symplectic form admit a full symplectic packing. This is work in progress, joint with Michael Entov. * * * "Hypercomplex manifolds of quaternionic dimension 2 and HKT-structures," Hypercomplex manifold is a manifold with three complex structures generating a quaternion algebra. Hypercomplex geometry is a quaternionic counterpart of complex geometry; however, compact hypercomplex manifolds almost never admit a Kahler structure (if they do, they are automatically hyperkahler, quite rare but much better understood). Kahler metric is a metric which is locally a complex Hessian of a function, called "a Kahler potential". HKT metric on a hypercomplex manifold is a natural analogue of a Kahler metric on a complex manifold. HKT metric is a metric which is locally defined as a quaternionic Hessian of a function, called "HKT potential". We push this analogy further, proving a quaternionic analogue of Buchdahl-Lamari's theorem for complex surfaces. Buchdahl and Lamari have shown that a complex surface M admits a Kahler structure iff $b_1(M)$ is even. We show that a hypercomplex manifold M with trivial canonical bundle (more precisely, with Obata holonomy SL(2, H)) admits an HKT structure iff $H^{0,1}(M)$ is even. Its proof is suprisingly easier than the proof of Buchdahl and Lamari, which involves regularization of positive currents; no regularization is necessarily (or possible) in quaternionic situation. This is a joint work with Geo Grantcharov and Mehdi Lejmi. I will try to explain all terms to make the lecture accessible for anybody with basic knowledge of differential and algebraic geometry. * * * Kahler threefolds without subvarieties. Let $M$ be a compact Kahler 3-fold without non-trivial subvarieties. We prove that $M$ is a complex torus. The proof is based on Brunella's fundamental theorem about structure of 1-dimensional holomorphic foliations and Demailly's regularization of positive currents. This is a joint work with F. Campana and J.-P. Demailly. I will try to explain all notions to make the lecture accessible for anybody with basic knowledge of differential and algebraic geometry. Израильская мобила, если что, 0549484954 но я не очень умею ей пользоваться. Поселились в Бат-Галиме, потому как дешево и у моря. Не русскоязычных тут, по-моему, просто нет, всюду дикая грязь, русские магазины, кошки, помойки, хрущобы, кошки. Конотоп, натурально. В квартире два зомбоящика, русских каналов больше, чем нерусских. Отключили оба, с отвращением, сколько можно. Со дня на день жду восстания зомби, по всему Конотопу, с требованиями прекратить русскоязычных и #ПутинВведиВойска. На юге война, но досюда не долетает. Привет Comments
|
Категория «Дизайн»
Взлеты Топ 5
Падения Топ 5
Популярные за сутки
|
Загрузка...
BlogRider.ru не имеет отношения к публикуемым в записях блогов материалам. Все записи
взяты из открытых общедоступных источников и являются собственностью их авторов.
взяты из открытых общедоступных источников и являются собственностью их авторов.