Сегодня 27 ноября, среда ГлавнаяНовостиО проектеЛичный кабинетПомощьКонтакты Сделать стартовойКарта сайтаНаписать администрации
Поиск по сайту
 
Ваше мнение
Какой рейтинг вас больше интересует?
 
 
 
 
 
Проголосовало: 7276
Кнопка
BlogRider.ru - Каталог блогов Рунета
получить код
Misha Verbitsky
Misha Verbitsky
Голосов: 1
Адрес блога: http://lj.rossia.org/users/tiphareth/
Добавлен: 2008-01-02 18:18:22 блограйдером Robin_Bad
 

Теорема Ратнер и ее применения

2014-07-18 18:06:27 (читать в оригинале)

Вот мой абстракт для летней школы лаборатории

http://bogomolov-lab.ru/SHKOLA2014/courses.html

Теорема Ратнер и ее приложения.

Теория Ратнер относится к действию дискретных
групп на однородных пространствах, но у нее есть
применения в самых разных областях математики.
Вот одна из теорем Ратнер: пусть $G$ -- вещественная
группа Ли, $H\subset G$ -- ее подгруппа, порожденная
унипотентами (экспонентами нильпотентных элементов
алгебры Ли), а $\Gamma\subset G$ -- дискретная
подгруппа, фактор по которой имеет конечный объем
(например, компактен). Тогда замыкание любой $H$-орбиты
в $G/\Gamma$ есть орбита подгруппы $S\subset G$.
Одно из следствий этого утверждения - гипотеза
Оппенхейма (1929), доказанная в 1987 Г. Маргулисом.
Эта гипотеза утверждает, что множество значений,
которые принимает иррациональная квадратичная
форма сигнатуры $(p,q)$, $p>q> 0$ в целых точках
плотно.

Теория Ратнер (и доказательство, и немалая часть
применений) основана на эргодической теории (теории
групп и полугрупп преобразований, действующих на
пространствах с мерой).

Я расскажу утверждение теоремы Ратнер и выведу из
нее несколько полезных следствий, в том числе
гипотезу Оппенхейма, изложу основы эргодической
теории, выведу "топологическое" утверждение
теоремы Ратнер из его эргодической версии, и
расскажу в общих чертах, как она доказывается.
Лекции рассчитаны на студентов, знакомых с
определением и базовыми свойствами групп Ли,
и с теорией меры (определение меры Лебега и ее
базовые свойства).

* * *

До последнего момента думал, что вещать не придется,
но из-за политической ситуации и просто мы лишились сначала
Фукса, потом Д. Бураго и в последний день - Воеводского, так
что пришлось извлекать со скамейки запасных.

Привет

number of comments Comments

Тэги: hse, math

 


Самый-самый блог
Блогер ЖЖ все стерпит
ЖЖ все стерпит
по количеству голосов (152) в категории «Истории»
Изменения рейтинга
Категория «Кино»
Взлеты Топ 5
+363
414
Информационный колодец
+341
345
Yurenzo
+339
343
CAPTAIN
+331
341
Alta1r
+322
361
Vindigo
Падения Топ 5


Загрузка...Загрузка...
BlogRider.ru не имеет отношения к публикуемым в записях блогов материалам. Все записи
взяты из открытых общедоступных источников и являются собственностью их авторов.