поскольку обычная логика (Аристотеля) универсальна, то и некоторые ...
поскольку обычная логика (Аристотеля) универсальна, то и некоторые знаковые конструкции мат. логики оказываются вездесущими, но далекоидущих выводов лучше не делать: это лишь шелуха-дань конечности и статичности любых мыслей и понятий наших, в любом конкретном случае объекты-термы и их соотношения могут быть дико разными по смыслу, содержанию и сложности. Поэтому я привык обзывать аксиоматической базой всю ту критическую массу, что необходимо заготовить и накопить перед тем, как начать логическую дедукцию, формальную или не не имеет значения.
типичным (и очень глубоким, конечно, одновременно естественным и всё же как-то неожиданным) примером универсальной/общезначимой (истинной в любой интерпретации при любой подстановке) конструкции в обычной (Аристотеля, то бишь) логике (исчислении предикатов первого порядка) является теорема Гёделя о полноте, то бишь о валидности и незыблемости обычного логического вывода по отношению ко всему и вся (объектам-термам и пр.), щас и во веки веков (
); именно это очень важно, а то, что получена в рамках формализованного контекста тоже важно с оглядкой на эффективность и безошибочность автоматизации логического вывода при помощи компов и пр.
... . Репетиторские услуги по
. 1.1. Школьная ... программа по
, 7-8 кл ...