Каталоги Сервисы Блограйдеры Обратная связь Блогосфера
Какой рейтинг вас больше интересует?
|
Бурановские бабушки в передаче от 14.05.2012 г2012-05-15 08:30:17... выпуска передачи Прямой эфир с Михаилом Зеленским ... + развернуть текст сохранённая копия Героинями этого выпуска передачи Прямой эфир с Михаилом Зеленским от 14 мая 2012 г. стали участници ансамбля «Бурановские бабушки». Этот ансамбль будет покорять сердца зрителей Евровидение 2012 г. который будет проходить в столице Азербайджана в г. Баку. Этим милым бабушкам, которым в среднем около 70 удалось обойти известный дуэт и [...] Тэги: 15.05.2012, видео, зеленским, михаилом, прямой, эфир Генетический тест для свекрови, выпуск программы от 10.05.2012 г2012-05-11 16:51:47В передаче Прямой эфир с Михаилом Зеленским ... + развернуть текст сохранённая копия В передаче Прямой эфир с Михаилом Зеленским от 10 мая 2012 г приняла участие молдованка Валентина Секу, которая потеряла покой и очень боится того, как сложится судьба ее малютки. До недавних пор ее жизнь больше походила на сказку. В столицу она прибыла с Молдавии, дабы заработать денег и повстречала Виталия, [...] Тэги: 10.05.2012, видео, зеленским, михаилом, прямой, эфир Невидимая Вселенная2012-05-11 03:19:00... диэлектрическую проницаемость эфира, обладает ... фазовый эфир и корпускулярный эфир, температура ... + развернуть текст сохранённая копия Карим ХАЙДАРОВ Полная версия статьи «Невидимая Вселенная» (DOC, 330 кб). РефератЕще 100 лет назад нобелевский лауреат Филипп фон Ленард указывал [1], что органы зрения человека, которым он доверяет более всего, охватывают лишь ничтожную часть всего спектра излучений во Вселенной. Подсознательно абсолютизируя свое зрение, усиленное телескопами Галилея и микроскопами Гука [2], человек возомнил, что оптическая часть излучения позволяет охватить всю Вселенную в неискаженном, ясном свете. Сформировавшиеся на основе оптического субъективизма представления о Вселенной на самом деле являются весьма искаженными и далекими от истины.Мифы современной астрофизикиМиф отсутствия невидимого появился как бы сам собой, без чьего-либо злого умысла и заведомой лжи. Как говорится: раз мы этого не видим, – этого нет. Действительно, наблюдая небесные тела, мы используем только ничтожную долю всего природного спектра излучений – 0,39...0,78·10–6 м. Остальная часть спектра скрыта от нашего животного зрения. Эта узкая полоска спектра соответствует максимуму солнечного света, проникающего через атмосферу и достигающего поверхности Земли. Это естественно. Миллиарды лет зрение животных приспосабливалось именно к этому диапазону излучения, который было выгодно использовать для выживания в земных условиях, где предметы светились отраженным солнечным светом внутри солнечного «оптического» диапазона.Однако, согласно закону, открытому Вилли Вином в 1893 году, максимум спектра собственного излучения любого тела линейно зависит от температуры тела и описывается формулой Вина [3]. Из нее непосредственно следует, что неосвещенные соседствующей звездой более холодные, чем Солнце небесные тела не видны в средства наблюдения оптического диапазона. С другой стороны, еще в 1879 году Й. Стефан экспериментально нашел, а в 1884 году Л. Больцман теоретически доказал, что излучение нагретых тел возрастает пропорционально четвертой степени температуры, поэтому, светимость звезд отличающихся по температуре (частоте излучения) в 2 раза различается в 90 раз. Таким образом, даже для космического телескопа им. Хаббла наблюдение далеких небесных тел, имеющих низкую температуру, является проблематичным. Для наземных телескопов это вообще неразрешимая задача, так как атмосфера Земли является фильтром, отсеивающим всё вне оптического диапазона и радиодиапазона. «Красные», то есть холодные звезды, за исключением красных гигантов и сверхгигантов просто не наблюдаемы. Возможность обнаружения малых небесных тел, типа планет и комет, удаленных от Солнца на расстояния более дальние, чем орбита Плутона с помощью наземных оптических средств также практически полностью исключена. Однако реально, как было умозрительно выведено И. Кантом [6, 7], такие тела должны составлять большую часть небесных тел во Вселенной. Действительно, если мы примем концепцию Канта и поймем, что основной путь образования небесных тел, – это агрегация из более мелких тел за счет электромагнитных сил и сил Ван-дер-Ваальса на этапе образования космической пыли и мелких кометных тел, и за счет гравитации – на этапе образования боле крупных небесных тел – протопланет и звезд, то станет ясной причина природного распределения небесных тел по массам, которое наблюдательно для оптического диапазона было найдено Эдвином Солпитером в 1955 году, и которое можно смело продолжить как в меньшую, так и большую сторону Физическая сущность солпитеровского распределения заключается в том, что процесс гравитационного захвата вещества является автомодельным для разных масштабов. Другими словами распределение Солпитера показывает, что основным процессом, определяющим распределение звездных масс, является гравитационная аккреция. Кроме того, в последнее время на орбиту выведено несколько телескопов, охватывающих более широкий спектр излучения как в инфракрасную, так и в ультрафиолетовую часть. Наблюдения этих телескопов показывают, что в ближней части космоса – области нескольких парсек находится множество инфракрасных протозвезд – коричневых или, по-другому, инфракрасных карликов, продолжающих распределение Солпитера в инфракрасную область [10]. Считая, что окрестности Земли не есть особое место во вселенной, необходимо признать, что плотность распределения звезд должна быть индифферентна к расстоянию от Земли. Действительно, когда исследователи рассматривают ближайшее окружение Земли в радиусе порядка 5...7 парсек, где все звезды в основном обнаружены, такая индифферентная равномерность наблюдается. Далее, где обнаруживаются лишь более яркие объекты, констатируется наблюдательное отклонение от этого распределения [11], которое показывает лишь ограниченные возможности наблюдения. Естественно, дефицит звезд образуется из наименее ярких [12]. Принятие концепции И. Канта сразу же решает парадоксы современной астрофизики: несоответствие устойчивости наблюдаемых в оптическом диапазоне звездных систем теореме вириала (точнее несоответствие реальности современным взглядам на состав звездных систем только из оптически наблюдаемых объектов), выбрасывает мистификацию особой «темной материи» в составе звездных систем. Эта темная материя всего на всего микрокометы, кометные тела и протопланеты – протозвезды малых размеров. Обладая реальной массовой плотностью 0,1...1,0 кг/дм3, массивы этих тел, не препятствуя прохождению света через занимаемое ими пространство, сосредотачивают в этом пространстве громадные массы ненаблюдаемого вещества. Прозрачность космического пространства, заполненного конденсированным веществом в t раз выше, чем заполненного газом t = D / d, где D – средний поперечник кусочка конденсированного вещества (пылинки, микрокометы); d – средний поперечник молекулы газа.Количество этого темного и холодного вещества в галактиках легко получить из условия (теоремы) вириала найденного в 1870 году Рудольфом Клаузиусом [13...15] 2Ekin + Epot = 0, где Ekin – кинетическая энергия системы звезд, Epot – потенциальная энергия этой системы.Анализ звездных систем (галактик и шаровых скоплений) дает долю темного вещества 90...97%, что стыкуется с распределением Солпитера при продолжении его в инфракрасную сторону. Миф громадных протозвездМиф громадных протозвезд появился усилиями релятивистов, апологетов алогичной гипотезы ОТО и ее дочерних моделей, таких как модель расширяющейся Вселенной Эйнштейна – Фридмана, использовавших несостоятельную гипотезу Дж. Джинса, 1903, о гравитационном коллапсе облаков протоматерии в громадные протозвездные объекты.Гипотеза Джинса несостоятельна по причине ее опоры на условия, реально не существующие во Вселенной. Первое необходимое условие ее реализации – это наличие некоторого газового давления в среде. Этого в космосе нет. Даже в «плотных» облаках космической пыли и газа давление практически отсутствует. Второй физический нонсенс, вытекающий из модели Джинса – отсутствие (не сохранение) момента количества движения. Дело в том, что согласно той же теореме о вириале объект может быть устойчив, то есть не разбивается на несколько частей, если его кинетическая энергия Ekin не превышает половины потенциальной энергии Epot системы. Это условие не может быть выполнено для единого тела при его коллапсе из газовой среды и приводит к дроблению первоначального облака на кластеры все более мелкого размера по мере уплотнения отдельных кластеров. Реально, большие водородно-гелиевые облака конденсируются не в гигантские протозвезды, а в шаровые звездные скопления, являющиеся естественными устойчивыми образованьями. Именно с шаровых скоплений, вопреки предрассудкам современной астрофизики, начинаются звездные системы, то есть шаровые скопления – это первые звездные образования из газовой среды. Шаровые скопления образуются постоянно, что видно из их статистического распределения во Вселенной. Увеличиваясь в размерах, шаровые скопления становятся эллиптическими галактиками, а затем, после обеднения газовой среды и сепарации вещества преобразуются в спиральные галактики. Самые большие «протозвезды» – это красные сверхгиганты, – эфемерные короткоживущие образования, эволюционирование которых можно увидеть даже на шкале нескольких десятков лет [16]. Образовываясь за счет аккреции межзвездного газа в местах его плотных скоплений, красные гиганты светят за счет гравитационной энергии падающих масс газа. Квазары, вопреки мифам современной астрофизики, являются не протозвездными, «космогоническими» объектами, а последней стадией звездной эволюции, так как эволюция небесных тел регулярно идет в сторону наращивания массы. Ведь, камни не падают в небо... Миф эруптивного происхождения комет и других небесных телНесмотря на логическую ясность агрегационной концепции Канта, возник миф эруптивного происхождения комет и других небесных тел.Этот миф возник не в физике, а стараниями великого математика Лагранжа, развивался феноменологически в трудах известного астронома Всехсвятского и имеет хождение до сих пор, хотя противоречит не только стройной концепции Канта о межзвездном происхождении комет, но и законам сохранения массы, энергии, момента, а также законам термодинамики. Абсурдность этого мифа видна из следующего. Для того, чтобы какому-либо телу покинуть поле гравитации планеты или звезды, ему необходимо придать скорость не ниже второй космической, то есть скорости убегания, как говорят на Западе. Вторая космическая скорость для типичной планеты составляет 5...50 км/с, что в 10...100 раз выше скорости ружейной пули и, соответственно, в 100...10 000 раз выше по энергетической емкости. Без специальных средств доставки (многоступенчатого ракетоносителя) эту скорость необходимо придать телу практически мгновенно. Есть ли такой физический процесс в Природе? До сих пор он неизвестен. Не предложен он ни в одной из эруптивных гипотез. Ни один из вулканов не обеспечивает и принципиально не может обеспечить такой скорости эрупции. Для возникновения таких скоростей температура внутри вулкана должна составлять сотни тысяч градусов, а прочность пород жерла, сдерживающего эту температуру и чудовищное давление должна превышать прочность тугоплавкого сопла современных ракетоносителей. Стоит ли говорить о реальности эрупции тел с поверхности звезд, скорость убегания для которых составляет сотни километров в секунду? Реально ли говорить о взлете с поверхности большой планеты, продвижении нежнейших снегоподобных комет и даже железных метеоритов с такой скоростью через плотные слои атмосфер планет без потери скорости и разрушения? Лишь одиночные частицы продуктов ядерного распада и газовые массы, выносимые ударной волной ядерного взрыва в состоянии развить такую скорость. Однако это уже другая история, касающаяся в основном взрывов «новых» и «сверхновых» звезд, а также «солнечного ветра», являющегося продуктом дейтерий-тритиевых взрывов на Солнце и звездах [17]. Мифы QSO – квазизвездных объектов рождаются постоянно с момента открытия первого квазара в 1960 году. Рождение этих мифов связано с игнорированием астрофизиками классических физических законов и физических фактов, поклонением релятивистской мифологии. Где корни этих мифов? Миф о конечности жизни ВселеннойКак нам кажется в основополагающем мифе – мифе о конечности жизни Вселенной. Это первый самый глубокий корень этой мифологии, состоящий в воззрении на Вселенную, как на конечный во времени и пространстве объект. Он был рожден еще в дремучее средневековье европейскими теологами. Живя оседло в ограниченной «ойкумене», средневековому европейцу было органично и понятно представление о Вселенной, как некоей «общей деревне» или «самом большом городе», который был построен по указу свыше. Ее возрасту отводилось около 5 с половиной тысяч лет.Только в 17-м веке после создания палеонтологии Робертом Гуком и последующих исследований геологов, биологов и историков европейцам стало ясно, что невозможно уложить возраст Вселенной в это прокрустово ложе. С каждым десятилетием развития естественных наук нижняя оценка возраста Вселенной всё увеличивалась, пока не достигла нескольких миллиардов лет к началу 20-го века. Благодаря расцвету релятивистской мифологии в 20-м веке воображаемый возраст Вселенной остановился на отметке 13...15 миллиардов лет. Реально, согласно гравитационным расчетам и наблюдаемым параметрам, даже шаровые скопления, эти микрогалактики должны иметь возраст больше релятивистской вселенной. Еще большие времена необходимы для образования отдельных галактик, еще большие для таких гравитационных объектов, как Великий Аттрактор. Сегодня это установлено достоверно. Миф «космогонической» природы квазаровМиф «космогонической» природы квазаров возник на базе релятивистского представления о конечности вселенной, на базе гипотезы о доплеровском происхождении красного смещения квазаров и подчиненности этого смещения хаббловскому закону расстояний.На самом деле, как показано исследованиями живого классика астрофизики Хальтона Арпа [18...31], квазары имеют собственное «внутреннее» красное смещение, никак не связанное с расстоянием до них. По мнению автора, собственное красное смещение квазаров имеет гравитационную природу и определяется особым компактным фазовым состоянием вещества квазаров [32]. Как будет показано ниже, кажущаяся удаленность квазаров, то есть видимая слабая зависимость их яркости от расстояния может быть объяснена без привлечения «космогонических» расстояний. Синхротронный мифМиф синхротронной природы радиоизлучения галактик, остатков сверхновых и квазаров возник на базе ошибочного решения, что радиоспектр этих источников является нетепловым, раз его наклон в радиодиапазоне не соответствует наклону тепловых источников, и релятивистского толкования этого явления.Пытаясь объяснить необъяснимое в рамках безэфирной физики релятивисты выдвинули гипотезу о синхротронном (тормозном) характере радиоизлучения галактик, см., например, [33]. Однако эта гипотеза не выдерживает критики и имеет приверженцев только благодаря тому, что до сих пор не выдвинуто разумного альтернативного решения этой проблемы. Реально для существования синхротронного излучения не выполняется как минимум три условия:
Рассмотрим теперь Вселенную в реальном широком спектре ее излучения, окружающем тонкую оптическую щель с двух сторон. Оптическая щель в планковском спектре небесных телСобственное излучение небесных тел практически мало отличается от чернотельного, то есть подчиняется квантовому закону излучения Планка, 1900 [34] Максимум такого спектра приходится на виновскую частоту. Высокочастотная сторона f > ~5fmax подчиняется распределению Вина, 1896 [3], а низкочастотная часть f < ~0,01fmax распределению Рэлея, 1900 [3]. Если температура тела значительно отличается от солнечной 5763°K, то спектр излучения выглядит рэлеевским для тел намного горячее Солнца и виновским – для более холодных тел.Другая особенность заключается в том, что как при смещении спектра в инфракрасную, так и в ультрафиолетовую сторону его доля в оптическом спектре падает, и наблюдаемое тело кажется излучающим меньшее количество энергии, чем это есть на самом деле. Таким образом, для источников, имеющих температуру в миллионы градусов (рентгеновские звезды и квазары), доля попадающая в оптический диапазон Evis падает в 1000 раз с повышением температуры Tsour в 10 раз. С другой стороны, тела, имеющие температуру ниже 700°K вообще не видны. Из изложенного непосредственно следует, что приписывание одному и тому же рентгеновскому источнику разной физики рентгеновского и оптического излучений неправомерно. Оптическая светимость есть край теплового спектра. Кажущееся отклонение оптической функции излучения ультрафиолетовых источников от закона КеплераВ 1604 году Иоганн Кеплер открыл оптический закон, названный в последствие его именем. Этот закон определяет, что интенсивность излучения Eobs (яркость источника света) падает обратно пропорционально квадрату расстояния от источника Robs. Этот закон абсолютно ясен и соответствует закону сохранения энергии, так как площадь фронта волны излучения 4πR2 растет прямо пропорционально квадрату расстояния.Однако не все так просто, когда мы имеем дело с реальным широким спектром излучения небесного тела и узким спектром оптического диапазона, охватывающего всего лишь одну октаву частот. Хаббловское красное смещение является функцией расстояния (просьба не путать с собственным красным смещением галактик и квазаров!) ZHublle + 1 = exp(ΔRH / c) = f0 / f, где ΔR – рассматриваемый участок пути, преодоленный светом, f0 – частота излучения в начале пути, f – частота кванта в конце рассматриваемого пути, H – постоянная Хаббла, c – скорость света.Отсюда со всей очевидностью вытекает, что для удаленных рентгеновских источников спектр их излучения сдвигается в красную сторону, то есть приближается к оптическому диапазону. Вследствие этого доля энергии этого спектра, попадающая в оптический диапазон растет. Таким образом, результирующая доля оптического излучения рентгеновского источника есть суперпозиция кеплеровского квадратичного рассеяния энергии, «спектрального сближения» и «старения света». В сумме это дает сложную картину изменения яркости источника с расстоянием, делая далекие рентгеновские источники наблюдательно ярче. То же самое происходит по другой причине. Спектр источников, имеющих собственное красное смещение, смещен для наблюдателя на это самое красное смещение. Соответственно этому ультрафиолетовые и рентгеновские источники становятся наблюдательно ярче, в пределе согласно, а для близких ультрафиолетовых источников согласно их доле в спектре Планка. Совместное влияние этих факторов создает ощущение независимости излучения от расстояния, так как будто ультрафиолетовый объект находится на расстоянии значительно большем, нежели это есть на самом деле, создавая иллюзию их «космогонической» удаленности. Для наглядного представления на рисунке 6 показаны энергетические зависимости для света, распространяющегося на «космогонических» расстояниях и энергетические функции его оптического наблюдения. Наблюдаемая оптическая яркость квазаров практически неизменна на больших расстояниях, в то время, как обычные оптические звезды быстро теряются во мгле Космоса. Именно поэтому в далеких галактиках видны только их рентгеновски активные ядра и квазары. Для того, чтобы понять явления, происходящие в радиодиапазоне, необходимо рассмотреть свойства самого эфира, который является средой, носителем электромагнитных волн. Эфир – среда-носитель электромагнитных волнЭфир, как и другие физические среды, обладает плотностью, вязкостью, поглощением, волновым сопротивлением, магнитной и диэлектрической проницаемостями.Рассматривая вопрос о плотности эфира поверхностно, руководствуясь привычными предрассудками, не стоит иронизировать по поводу плотности эфира, 2,818 [кг/м3], найденной автором [35]. На самом деле это не гравитационная плотность, как у вещества, а инерционная плотность, как у физических полей, в том числе света, точно в том смысле, как понимал эту плотность ρ и ее связь с энергией E и скоростью света c Николай Алексеевич Умов, 1870 [36...40]: dE / dρ = c2 [м2/с2]. задолго до спекуляций 20-го века.Как и обычное вещество, эфир обладает свойством температуры, которая в обычных условиях равна 2,72°K (найдено проф. Эрихом Регенером в 1933 году [41], а не Пензиасом и Вильсоном в 1964). Соответственно, эфир имеет планковский спектр излучения черного тела. Поглощение энергии световых квантов эфиром определяется процессом релаксации, возбуждения вынужденных колебаний его элементов – амеров проходящей через эту среду электромагнитной волной. Обладая инерцией, каждый амер представляет собой гармонический осциллятор частоты ωTa, определяемой индивидуальной температурой амера Ta. Как это установил Макс Планк термодинамически сбалансированный статистический ансамбль таких излучателей дает распределение, характерное для «черного» тела. Однако каждый амер в отдельности – это резонатор с очень большой добротностью. Легко видеть, что для высоких частот (для оптического диапазона ω/ωTa ≈ 2000) отклик на внешнее воздействие является обратно квадратичной функцией частоты. С другой стороны, энергия этих вынужденных колебаний есть энергия, отнимаемая у света. То есть энергия светового кванта в связи с однородностью эфира уменьшается со временем по экспоненциальному закону Коэффициент затухания, проявляющий себя на межгалактических расстояниях, известен – это постоянная Хаббла. С другой стороны коэффициент затухания волновых колебаний практически в любой изотропной среде можно выразить через кинематическую вязкость среды. Отсюда видно, что вязкость эфира для высоких частот есть обратно квадратичная функция частоты электромагнитных волн. Это свойство обеспечивает кажущееся отсутствие дисперсии вакуума в инфракрасном, оптическом и ультрафиолетовом диапазонах. Падение вязкости с частотой полностью компенсируется таким же возрастанием циклов поглощения, диссипации энергии кванта, и дисперсия оптических волн в эфире не наблюдаема. Это делает эфирную среду «невидимой» в узком оптическом диапазоне, порождая релятивистскую мифологию об отсутствии эфира. Для разоблачения этой мифологии рассмотрим процесс взаимодействия электромагнитных волн и эфира более подробно. Рэлеевское рассеяние электромагнитных волн в эфиреВ 1871 году лорд Рэлей вывел закон рассеяния света на малых частицах, который можно распространить и на случай рассеяния электромагнитных волн в эфире [42].Действительно, рассматривая формулу Рэлея можно увидеть, что здесь присутствуют два мультипликативных фактора:
В свою очередь напряженность электрического поля, создаваемая фотоном есть квадратичная функция частоты. Физически это означает, что связанный эфир, размер доменов которого определяет диэлектрическую проницаемость эфира, обладает инерционными свойствами с характеристической частотой много ниже собственной частоты амера свободного фазового эфира ωTa, что эквивалентно высокочастотной аппроксимации функции отклика гармонического осциллятора. Второй фактор имеет более сложный характер, определяемый термодинамическим рассеянием энергии квантом света. Здесь можно выделить две области частот:
В квантово-оптическом диапазоне, когда частота волны, а значит ее эффективная температура выше соответствующих параметров среды, происходит процесс диссипации, аналогичный закону излучения Стефана – Больцмана. В отличие от закона Стефана – Больцмана здесь необходимо учесть, что процесс излучения идет не в пустом пространстве, а в эфире. Таким образом, в связи с уменьшением эффективной площади кванта с квадратом частоты, уровень диссипации энергии пропорционален второй степени разности частот волны и эфира. Согласно закону Кирхгоффа планковское чернотельное излучение и поглощение эфира должно приводить к поглощению электромагнитных волн близких к 3·1011 Гц (λ = 1 мм) на «космогонических» расстояниях. Оптическая толщина эфира D = c / H = 13,4·109 лет. То есть вся оптически наблюдаемая вселенная есть тонкий поверхностный слой толщи реальной Вселенной. Яма в наблюдаемых спектрах небесных тел в области частот 3·1011 Гц (в том числе «нетепловой» наклон радиоспектров) частично объясняется этим. Однако, есть еще одно явление, поражающее своими масштабами наблюдателей. Это мощное радиоизлучение некоторых галактик, квазаров и пространства в местах произошедших в прошлом взрывов сверхновых. Рассмотрим это явление подробно. Комбинационное излучение эфира в радиодиапазонеКак было показано, амеры свободного фазового эфира, будучи несвязанными гармоническими осцилляторами, обладают чрезвычайно большой добротностью.В течение длительного времени релаксации, медленно меняя свою индивидуальную частоту, они распределяются в термодинамически уравновешенный ансамбль, представляемый распределением Планка. Однако в эфире есть еще два других сорта амеров – связанный фазовый эфир и корпускулярный эфир, температура которых может не быть равной температуре свободного эфира, нагреваемого небесными телами. Теплоемкость связанного и корпускулярного эфиров настолько велика, что их планковское черно-тельное распределение сугубо постоянно. В связи с соизмеримостью размеров амеров связанного фазового и свободного эфиров, время от времени между ними возникает взаимодействие, порождающее излучение низкой комбинационной частоты: fcomb = | fbound – ffree | . Эта частота есть частота радиоизлучения эфира в неравновесном состоянии. Такое состояние возникает при мощном нагреве эфира, когда температура свободного эфира Tfree существенно отличается от стабильной температуры Tbound основы – эфира связанного и корпускулярного.Мощность такого радиоизлучения можно определить с помощью модифицированной автором формулы Стефана – Больцмана. Таким образом, эфир, нагретый квазарами и сверхновыми, должен излучать в радиодиапазоне. И реально, это наблюдаемо в виде «радио-теплых» мест во Вселенной. Хорошую иллюстрацию дают снимки CYGNUS A. На них отчетливо видно понижение температуры эфира, то есть увеличение длины волны радиоизлучения с удалением от галактики. Таким образом «радио объекты» на этих снимках – пустой и нагретый эфир. Межзвездная дисперсия света на эфиреБолее 30 лет назад было обнаружено явление межзвездной дисперсии света, когда была найдена разница в моменте прихода импульсов света и радиоимпульсов пульсаров. Ясно, что имея широкий спектр излучения – от рентгена до радио первоначальный импульс излучения пульсара претерпевает «расслоение», временную дисперсию в связи с разницей скоростей высокочастотных и низкочастотных волн.Релятивисты не могли признать дисперсию как атрибут среды – носителя. Это означало бы крах теории относительности. В связи с этим был сочинен миф о существовании горячей плазмы, равномерно рассеянной в космическом пространстве. Миф о космической плазме неприемлем по следующим причинам:
Непредвзятый и внимательный анализ данных по межзвездной дисперсии показывает, что ее поведение описывается найденными автором закономерностями, а наблюдаемые отклонения от линейной зависимости меры дисперсии (DM) некоторых пульсаров определяются параметрами облака вещества, находящегося в процессе рассеяния после взрыва сверхновой. Как показывают исследования автора, диспергирующее влияние рассеянного сверхновой вещества (холодных электронов) удовлетворительно описывается формулой Kform = exp(–t / Tscat)(1 – exp(–t / Tform), где Tscat – постоянная времени рассеяния облака вещества; Tform – постоянная времени формирования облака.Автором найдены такие средние значения: Tscat = 1,2 млн лет, Tform = 5900 лет. Экспериментальный данные вписываются в эту модель с коэффициентом корреляции 0,9985. ВыводыОпираясь на классические работы Иоганна Кеплера, Роберта Гука, Иммануила Канта, Рудольфа Клаузиуса, Людвига Больцмана, Джона Рэлея, Николая Умова, Филиппа Ленарда, Вилли Вина, Макса Планка, Эриха Регенера, Эдвина Хаббла, Эдвина Солпитера, Хальтона Арпа и других современных астрофизиков, автор попытался представить перед читателем истинный лик Вселенной, резко отличающийся от релятивистски свернутого в птолемеевское яйцо мира 20-го века.В данной работе показано, что:
Полная версия статьи: PDF (387 кб). Источники информации:
http://n-t.ru/tp/ns/nv.htm Тэги: вселенный, эфир Энергетический феномен вакуума2012-05-11 03:10:00Косинов Н.В., Гарбарук В.И.
Физический вакуумВ настоящее время в физике формируется принципиально новое направление научных исследований, связанное с изучением свойств и возможностей физического вакуума. Это научное направление становится доминирующим, и в прикладных аспектах способно привести к прорывным технологиям в области энергетики, электроники, экологии.Чтобы понять роль и место вакуума в сложившейся картине мира попытаемся оценить, как соотносится в нашем мире материя вакуума и вещество. В этом отношении интересны рассуждения Я.Б. Зельдовича. «Вселенная огромна. Расстояние от Земли до Солнца составляет 150 миллионов километров. Расстояние от солнечной системы до центра Галактики в 2 млрд раз больше расстояния от Земли до Солнца. В свою очередь, размеры наблюдаемой Вселенной в миллион раз больше расстояния от Солнца до центра нашей Галактики. И все это огромное пространство заполнено невообразимо большим количеством вещества. Масса Земли составляет более чем 5,97·1027 г. Это такая большая величина, что ее трудно даже осознать. Масса Солнца в 333 тысячи раз больше. Только в наблюдаемой области Вселенной суммарная масса порядка десять в 22-й степени масс Солнца. Вся безбрежная огромность пространства и баснословное количество вещества в нем поражает воображение». С другой стороны, атом, входящий в состав твердого тела, во много раз меньше любого известного нам предмета, но во много раз больше ядра, находящегося в центре атома. В ядре сконцентрировано почти все вещество атома. Если увеличить атом так, чтобы ядро стало иметь размеры макового зернышка, то размеры атома возрастут до нескольких десятков метров. На расстоянии десятков метров от ядра будут находиться многократно увеличенные электроны, которые все равно трудно разглядеть глазом, вследствие их малости. А между электронами и ядром останется огромное пространство не заполненное веществом. Но это не пустое пространство, а особый вид материи, которую физики назвали физическим вакуумом. Само понятие «физический вакуум» появилось в науке как следствие осознания того, что вакуум не есть пустота, не есть «ничто». Он представляет собой чрезвычайно существенное «нечто», которое порождает все в мире, и задает свойства веществу, из которого построен окружающий мир. Оказывается, что даже внутри твердого и массивного предмета, вакуум занимает неизмеримо большее пространство, чем вещество. Таким образом, мы приходим к выводу, что вещество является редчайшим исключением в огромном пространстве, заполненном субстанцией вакуума. В газовой среде такая асимметрия еще больше выражена, не говоря уже о космосе, где наличие вещества является больше исключением, чем правилом. Видно, сколь ошеломляюще огромно количество материи вакуума во Вселенной в сравнении даже с баснословно большим количеством вещества в ней. В настоящее время ученым уже известно, что вещество своим происхождением обязано материальной субстанции вакуума и все свойства вещества задаются свойствами физического вакуума. Наука все глубже проникает в сущность вакуума. Выявлена основополагающая роль вакуума в формировании законов вещественного мира. Уже не является удивительным утверждение некоторых ученых, что «все из вакуума и все вокруг нас – вакуум». Физика, сделав прорыв в описании сущности вакуума, заложила условие для практического его использования при решении многих проблем, в том числе, проблем энергетики и экологии. По расчетам Нобелевского лауреата Р. Фейнмана и Дж. Уилера, энергетический потенциал вакуума настолько огромен, что «в вакууме, заключенном в объеме обыкновенной электрической лампочки, энергии такое большое количество, что ее хватило бы, чтобы вскипятить все океаны на Земле». Однако, до сих пор традиционная схема получения энергии из вещества остается не только доминирующей, но даже считается единственно возможной. Под окружающей средой по-прежнему упорно продолжают понимать вещество, котороготак мало, забывая о вакууме, которого так много. Именно такой старый «вещественный» подход и привел к тому, что человечество буквально купаясь в энергии, испытывает энергетический голод. В новом – «вакуумном» подходе исходят из того, что окружающее пространство – физический вакуум, является неотъемлемой частью системы энергопреобразования. При этом возможность получения вакуумной энергии находит естественное объяснение без отступления от физических законов. Открывается путь создания энергетических установок, имеющих избыточный энергобаланс, в которых полученная энергия превышает энергию, затраченную первичным источником питания. Энергетические установки с избыточным энергобалансом смогут открыть доступ к огромной энергии вакуума, запасенной самой Природой. В поисках новых источников энергииСегодня человечество остро нуждается в замене существующих энергетических технологий на экологически чистые, гарантирующие сохранение биосферы. Это особенно касается энергетики, основанной на сжигании природных запасов угля, нефти, газа, урана. Уровни получаемой энергии остаются незначительными и проблема энергообеспечения не находит решения. Доставка энергии потребителям также остается дорогостоящей. Кроме того, запасы полезных ископаемых и ресурсы дешевого урана исчерпываются. Предполагается, что в ближайшее время потребление природных ресурсов достигнет 25 млрд тонн, поэтому делаются прогнозы, что запасов природного топлива человечеству хватит примерно на 150 лет.Атомная энергетика, кроме опасностей эксплуатационного характера, имеет нерешенную проблему захоронения и утилизации ядерных отходов. Все меньше надежд у ученых на успешную реализацию программы управляемого термоядерного синтеза. Решение этой проблемы многократно уже отодвигалось на более поздние сроки и теперь видят ее решение не ранее 2050 года. Разрабатываются проекты использования солнечной энергии. Солнечную энергию планируется перерабатывать в электричество путем создания космических электростанций. Для получения мощности в 10 миллионов киловатт необходимы солнечные батареи площадью примерно 100 квадратных километров. В микроволновом диапазоне энергию можно будет транспортировать на Землю. На пути решения этой задачи стоят серьезные проблемы создания передающих и приемных систем, работающих в диапазоне СВЧ-волн, небезопасных для биосферы, а также орбитальных солнечных электростанций, представляющих собой крупногабаритные космические объекты. Как видим, экологически чистой энергии и способов ее получения, безопасных для биосферы, несмотря на огромнейшие затраты в этом направлении, мир еще не нашел. Причиной является то, что поиски ведутся в традиционных направлениях, которые в рамках сложившихся представлений, могут привести лишь к небольшим «косметическим» доработкам существующих подходов и не способны вывести на прорывные решения. Ограниченность энергоресурсов ставит задачу поиска принципиально новых способов получения энергии. Если проанализировать наиболее распространенные способы получения энергии, используемые в настоящее время, то можно увидеть определенную закономерность. Суть ее состоит в следующем. Конечным продуктом всей цепи энергетических преобразований, в современных способах получения энергии, является вещество. Причем, это конечное вещество становится, как правило, более опасным для биосферы, чем исходный энергоноситель. Это относится и к энергетике, основанной на сжигании природного топлива, и к атомной энергетике, и к ядерному синтезу. Мир уже свыкся с мыслью, что для получения энергии нужно воздействовать на вещество и на конечной стадии также получать вещество. Более того, такой путь считается чуть ли единственно возможным. А так ли это? Задача состоит в том, чтобы найти совершенно новые способы получения энергии, свободные от традиционной схемы: «вещество в начале – вещество в конце». Альтернативой существующим способам получения энергии могут стать только такие способы, в которых на конечной стадии энергопреобразований не будет появляться опасное для биосферы вещество или будет совсем отсутствовать вещество как таковое. Несмотря на казалось бы парадоксальную формулировку, решение проблемы существует и это решение дает физический вакуум [1, 2]. Поэтому, в настоящее время направления поисков новых способов получения энергии переместились на область физического вакуума и их интенсивность в последние годы бурно возрастает. Совершенно реальным является создание принципиально новых генераторов [3], которые смогут использовать энергию окружающей среды и превратить ее в удобную форму энергии. И тому есть серьезные экспериментальные подтверждения. Новые энергетические феноменыВ настоящее время накоплено большое количество экспериментальных фактов, подтверждающих реальность получения уровней энергии, которые превышают энергию, затраченную первичным источником. Как правило подобные явления проявляются в исследованиях, связанных с физическим вакуумом. Такие работы интенсивно проводятся в США, России, Германии, Японии, Швейцарии. Появление избыточной энергии на выходе генератора, превышающей потребление энергии от источника питания, или как это иногда называют – появление энергии из «ничего», зафиксировано во многих экспериментах. Речь совершенно не идет о вечном двигателе, поскольку учет всех факторов, в том числе энергии вакуума, и корректные расчеты не выявляют нарушений законов термодинамики [37]. В величину получаемой энергии вносит свой вклад вакуум, приводя к избыточному энергобалансу.Приведем в качестве примеров появившиеся в печати сообщения о новых разрабатываемых технологиях получения избыточной энергии, появление которой нельзя объяснить с позиций традиционных взглядов. Американский ученый Дж. Григгз (Картесвиль, штат Джорджия) изобрел устройство, названное «гидросонным насосом», которое предназначено для нагревания воды и получения пара [4]. Установка весит около 150 кг. Эксперименты на модели гидросонного насоса выявили наличие большого количества избыточной тепловой энергии. Данному феномену автор изобретения пока не находит объяснения, однако многократные испытания, проводимые уже несколько лет, всегда выявляют наличие избыточной энергии. По сообщениям автора энергетический выигрыш достигает 168%. Избыточная энергия на выходе этого устройства намного превышает энергию, необходимую для запуска. Явление высвобождения избыточной энергии проявляется стабильно при всех испытаниях. И это не единичный факт. Экспериментально подтверждено появление избыточной энергии в исследованиях газоразрядных устройств, проведенных проф. А.В. Чернетским [5]. Было выявлено появление избыточного энергобаланса, при котором полученная энергия в 1,5...2 раза превышала затраченную. Ученым зафиксирован новый физический эффект, который назван им плазменно-вакуумным эффектом. Еще в 1959 году в Институте металлургии АН СССР были проведены серии экспериментов с использованием полупроводниковых термоэлементов, в которых наблюдалось появление избыточной энергии. Феномен избыточной энергии устойчиво проявлялся как в режиме теплового насоса, так и тогда, когда осуществлялась полная изоляция термобатареи от окружающей среды. В одном из опытов экпериментальная установка представляла собой сосуд Дьюара с помещенной в него полупроводниковой термобатареей. В установке были приняты специальные меры для исключения присоса тепла извне. Таким образом, эффект теплового насоса исключался. Количество тепла, выделяемое на термобатарее, во многих опытах в 2,2...2,6 раза превышало потребляемую электроэнергию [23]. Японские ученые изобрели устройство для получения тепловой энергии в водной среде, которое названо лазером голубой воды. В устройстве использованы явления холодного ядерного синтеза и новое физическое явление преобразования звуковых волн в свет, которое носит название сонолюминесценция. В водной среде создается синхронное акустическое поле и осуществляется концентрация ультрафиолетового света сферической линзой. Концентрация ультрафиолета осуществляется в облать пространства, где происходит сонолюминесценция за счет воздействия акустических волн. Устройство планируется использовать как компактный генератор энергии для нагрева природной воды. Другим устройством, разработанным японскими учеными, является генератор (JPI-1), в котором использован феномен появления избыточной энергии. В генераторе имеются вращающиеся в магнитном поле диски. Разработан проект более совершенного генератора (JPI-2) на основе сверхпроводящей электромагнитной системы. Предусматривается создание генератора в двух модификациях. Различие состоит в использовании вращающихся роторов диаметром 30 см и 50 см. Расчеты создателей генератора показывают, что после запуска генератора от внешнего источника, он должен генерировать 30...40 киловат мощности. Скорость вращения ротора планируется довести до 8000 оборотов в минуту. Генератор с ротором диаметром 50 см по расчетам должен иметь мощность 200 кВт. В Швейцарии разработан конвертер, который представляет собой комбинацию электростатической машины с электростатическим двигателем. Генератор весит около 20 кг. При запуске генератора путем вращения дисков, он вырабатывает электроэнергию, которая значительно превышает энергию, затраченную на его запуск. Феномен продуцирования энергии надежно воспроизводится. Конвертер генерирует 3 кВт мощности [6]. Несмотря на то, что оптимистические прогнозы в использовании холодного ядерного синтеза, открытого М. Флейшманом и С. Понсом, как нового способа получения энергии, не оправдались, их открытие пробудило большой интерес ученых к поиску новых источников энергии. Примером может служить принципиально новый подход, предложенный доктором Рэндэллом Миллзом – президентом компании НРС (Гидрокаталисис Пауэр Корпорейшн, штат Пенсильвания, США). Его идея не основана на ядерных реакциях. В электролитической ячейке Миллза используется «легкая» вода, а энергия высвобождается в результате каталитического процесса, при котором электрон водородного атома побуждается к переходу на более низкий энергетический уровень. Исследования показали многократное превышение выходной мощности над входной. Так, ячейка потребляющая 18 Вт электрической мощности производит 50 Вт. Процесс генерации избыточной энергии продолжается длительное время – многие месяцы [18]. В работах Ю.А. Багрова (Россия) сообщается о созданных движителях-генераторах, использующих энергию физического вакуума. Экспериментально исследуется новый вид теоретически предсказанного взаимодействия и новой силы, соответствующей ему. По утверждению автора [26] «за счет сфазированности движения материальных тел с процессом образования физического пространства» удается значительно усилить новое взаимодействие. В демонстрационных моделях уверенно контролируется выходная мощность около 50 Вт, возникающая за счет энергии физического вакуума [26]. В работе Р.Ф. Авраменко и В.И. Николаевой [39] приведены результаты исследований электрической цепи из последовательно соединенных элементов R, L, C, содержащей плазменный промежуток, в котором выявлено появление избыточной энергии. Появление избыточной энергии исследователи связывают с существованием у электрона энергетического уровня 3,73 кэВ и его вкладом в баланс энергии. Исследования Н.Е. Заева (Россия) [40] выявили способность некоторых диэлектриков и нелинейных ферромагнетиков в циклах «заряд-разряд» и «намагничивание-размагничивание» генерировать электрическую энергию за счет своей тепловой энергии. При этом, отдаваемая при разрядке (размагничивании) энергия, превосходит вводимую энергию при зарядке (намагничивании). В устройстве запатентованном С. Мейером (США) используется разложение воды с целью получения водорода и кислорода, которые затем сжигаются в особом реакторе, где на горючий газ производится воздействие электромагнитным полем. Благодаря использованию электронного воздействия, энергия сгорания кислорода и водорода значительно превосходит энергию, затраченную на их разложение. В генераторе выявлена избыточная энергия. Ведутся испытания такого конвертера на автомобиле. Проведенные испытания демонстрируют реальность практического использования такого способа получения избыточной энергии. Расход воды на 100 км пробега автомобиля составляет около 3-х литров [7]. В устройстве запатентованном К. Шоулдерсом [24] вакуумная энергия извлекается путем осуществления импульсного разряда в трубке, в которой создано разрежение (Evacuated Tube). Нагрузка подключается к обмотке, расположенной с наружной стороны трубки. В устройстве создается высокая плотность разрядного тока в импульсном режиме, при котором в зоне между электродами возникает устойчивое плазменное образование – сгусток электронов тороидальной формы. Электронный сгусток при движении от катода к аноду пополняется энергией и генерирует в нагрузочной обмотке импульс тока с энергией в 30 раз превышающей энергию, затраченную на создание разряда. Попытки найти убедительные теоретические объяснения перечисленным энергетическим феноменам, с позиций существующих научных воззрений, не увенчались успехом. Сейчас ведутся активные работы по раскрытию механизмов, ответственных за появление избыточной энергии с привлечением теории физического вакуума. Налицо ситуация, когда экспериментальные результаты опережают теорию. Экспериментальные достижения показывают, что мир подступается к практической реализации новейших способов получения энергии, не мыслимых даже несколько лет назад. Монополией на новые способы получения избыточной энергии стремятся завладеть исследователи США, Германии, России, Франции, Швейцарии и других стран, проводя активное патентование всех разрабатываемых технических решений. Факт появления избыточной энергии, исследователи преподносят как важнейшее достоинство своих изобретений. Направления исследованийВ последнее время к работам по созданию устройств, имеющих избыточный энергобаланс, и к поиску механизмов, приводящих к появлению избыточной энергии, подключаются ученые практически во всех странах. Гонки за овладение секретом получения новой энергии начаты. Наиболее интенсивно подобные исследования стали проводиться в последние годы [7...36]. Это связано с тем, что были опубликованы патенты Дж. Григгза [4] и К. Шоулдерса [24] на генераторы энергии, в которых зафиксировано получение избыточной энергии, значительно превышающей подводимую энергию. Работы по получению избыточной энергии ведутся в нескольких направлениях:
Большой интерес к проблеме вакуумной энергии проявляет космическое агенство США (NASA). NASA ставит такие задачи, которые буквально несколько лет назад показались бы фантастикой. В 1997 году было проведено заседание рабочей группы, на котором рассматривались новые подходы для достижения научного прорыва в космических исследованиях и создания двигателей, не требующих запасов горючего на борту. Рассматривались новые методы получения энергии, в том числе энергии вакуума, которые могли бы обеспечить научный прорыв в области создания эпохальных ракетных двигателей, работающих на новых принципах [29, 38]. В США, Германии и Японии исследуются как теоретические проблемы, связанные с вакуумной энергией так и попытки ее практического получения. Количество публикаций по вакуумной проблеме в последние годы имеет тенденцию к нарастанию [27...36]. Некоторые зарубежные исследования основываются на использовании эффекта Казимира, который был открыт в 1948 году [9]. Суть эффекта состоит в появлении силы за счет флуктуаций физического вакуума, при котором наблюдается механическое взаимодействие вакуума с электропроводящими пластинами. Способы получения энергии с применением данного эффекта предусматривают превращение давления, осуществляемого вакуумом на пластины в электричество с помощью многослойных структур. Активно ведутся исследования основанные на идее «нулевых колебаний вакуума». В физическом вакууме открыты электромагнитные поля, которые существуют в нем даже при температуре абсолютного нуля. Расчеты показывают, что энергия их очень велика. Это и есть так называемое нулевое излучение вакуума. Идея использования нулевых колебаний вакуума для целей получения энергии приводит к выводу о существовании трех основных способов, посредством которых вакуум может высвобождать накопленную в себе энергию:
Состояние с патентованиемСообщения о разработке генераторов, вырабатывающих избыточную энергию, охватывают литературу и патенты по нескольким классам международной патентной классификации. Среди них можно выделить следующие классы: генераторы электромагнитные, генераторы электростатические, генераторы на постоянных магнитах, теплогенераторы для нагрева жидкостей, параметрические генераторы на основе резонансных контуров, преобразователи на основе плазменных и плазмоподобных элементов, генераторы шаровых плазменных образований [11...16, 39].В мире идет активное патентование всех разрабатываемых технических решений, которые хоть как-то связаны с новыми способами получения энергии. Большинство патентов появились по результатам выявленных энергетических феноменов при проведении исследований и экспериментов. Новая энергетическая концепцияУспехи современной физики в постижении тайны вакуума позволяют с совершенно новых позиций подходить к способам получения энергии [17, 19, 20].Вакуумная картина мира дает возможность с иных позиций осмыслить сложившиеся подходы и методы получения энергии и выйти на совершенно новые технологии в области энергетики. В этих технологиях существенная роль отводится вакуумным эффектам [17, 21, 22]. Вакуум впервые учтен в процессах энергетических преобразований, как естественная материальная среда, воздействуя на которую, вместо воздействия на вещество, как это традиционно принято, можно будет получать большие уровни энергии. Новая концепция, в корне отличается от сложившихся подходов. Принципиальным ее отличием является использование вакуумных технологий для целей получения высоких уровней энергии. В результате открываются возможности впервые получить на конечном этапе энергетических преобразований вместо экологически опасного вещества, естественную материальную природную среду – вакуум. При этом, находят решение как проблемы получения высоких уровней энергии, так и проблемы экологической чистоты самого процесса получения энергии. Концепция вакуумной энергетики имеет целью создание энергоустановок на основе использования физических эффектов, которые позволят реализовать избыточный энергобаланс в системе. В таких энергоустановках для получения энергии осуществляется воздействие не на вещество, а на вакуум, доводя его до определенного уровня возбуждения. Центральной задачей при разработке концепции вакуумной энергетики считается решение проблемы технической реализации специальных полевых образований, обеспечивающих протекание вакуумных эффектов и поиск среды, в которой вакуумные эффекты реализуются наиболее эффективно. Для получения высокой плотности энергии начального возбуждения вакуума необходима специальная геометрическая форма реактора. Наибольшее предпочтение отдается сферическим реакторам [22, 41]. Высокая плотность энергии в центре сферы, необходимая для введения вакуума в возбужденное состояние, достигается сравнительно просто при минимальной начальной энергии. Представляют интерес также цилиндрические и конические формы реакторов. В качестве среды возбуждения и теплоносителя исследуется жидкость. Жидкость выполняет двойную функцию. С одной стороны она является теплоемкой средой для отбора и аккумулирования энергии, с другой стороны она создает условия для реализации управляемого процесса возбуждения. С целью получения избыточной энергии в настоящее время активно исследуются явление электромагнитного коллапса, явление сонолюминесценции, пинч-эффект, светогидравлический эффект, электрогидравлический эффект. Перечисленные физические явления эффективно реализуются в жидкой среде. Стоит задача разработки специального способа возбуждения вакуума, в котором все перечисленные эффекты должны быть совмещены. Достижение высоких плотностей энергии в локальной зоне пространства рассматривается как ключевой момент для доведения уровня возбуждения вакуума до критического, без реализации которого невозможно получение энергии [22]. Вакуумные эффекты, реализуемые в жидкой среде, открывают принципиально новый подход к способам получения энергии. Компактные генераторы энергии, основанные на реализации вакуумных эффектов, размещенные в местах потребления энергии, позволят решить энергетические проблемы и сулят большие коммерческие выгоды. Концепция создания генератора вакуумной энергииДля создания генератора вакуумной энергии используются следующие особенности физического вакуума.
Существование критического уровня возбуждения для вакуума и наличие естественного природного фона электромагнитных полей, космических излучений, приводящих к фоновому уровню возбужденного состояния вакуума, создают условия для получения энергии на нагрузке большей, чем затрачено первичным источником питания. Необходимая добавка берется не из ниоткуда, а высвобождается запасенная и существующая в Природе энергия. Вакуум в новой концепции рассматривается как энергоноситель и как объект, на который осуществляется воздействие с целью высвобождения запасенной энергии. Основным видом воздействия на вакуум является электромагнитное воздействие. Целью электромагнитного воздействия является доведение уровня возбуждения вакуума до критического. Необходимым условием возбуждения вакуума является создание высокой плотности энергии в локальной зоне пространства. Достаточным условием возбуждения вакуума является разделение зарядов в энергонасыщенной локальной зоне пространства. И необходимое условие – создание высокой плотности энергии, и достаточное условие – разделение зарядов, обеспечивается конструкцией вакуумного генератора и электронной схемой управления генератором. Генератор обеспечивает работу в следующих режимах:
В вакуумном генераторе предусмотрено наличие нескольких ступеней аварийной защиты. Основой аварийной защиты является выбор вместо непрерывного возбуждения, импульсного характера возбуждения вакуумного генератора с блокировкой очередного импульсного воздействия электронным узлом аварийного отключения возбуждения при превышении уровня мощности. Схема генератора приведена в [37]. Об авторе: Косинов Николай Васильевич, кандидат технических наук. Киев, тел. (044) 566-8788. E-mail: kosinov@unitron.com.ua Источники информации:
http://n-t.ru/tp/ie/efv.htm Тэги: вакуум, эфир Д. Петров. Чёрные дыры Космоса и лизосомы биологической клетки: принцип аналогии2012-05-07 18:10:02Д. Петров. Чёрные дыры Космоса и лизосомы биологической клетки: принцип аналогии Загрузка...
|