прошлой части я озвучил 3 тезиса:
- 1. Время на хакатоне крайне ценный ресурс.
- 2. Правильная организация командной работы дает вам большое преимущество.
- 3. Azure ML – не инструмент прототипирования, для прототипирования стоит использовать R/Python.
Azure Machine Learning
Azure Machine Learning (Azure ML) – облачный сервис для выполнения задач, связанных с машинным обучением. Почти наверняка Azure ML будет центральным сервисом, которым вы будете пользоваться, в случае, если захотите обучить модель, в облаке Azure.
Подробный рассказ про Azure ML не входит в цели данного поста, в тем более, что о сервисе уже достаточно написано: Azure ML для data scientist’ов [3], best practices обучения модели в Azure ML [4]. Сконцентрируемся на следующей задаче: организация командной работы с максимально безболезненным переносом R-скриптов с локального компьютера в Azure ML Studio.
Читать полностью
best practices обучения моделей в Azure Machine Learning. Но Azure ML – это не
лучший инструмент для прототипирования; это скорее сервис для создания готового продукта со всеми вытекающими отсюда затратами как на время разработки, так и на стоимость владения.
R же прекрасно подходит для создания прототипов, для копания (mining) в данных, быстрой проверки своих гипотез – то есть всего того, что нам нужно на такого типа соревнованиях! Ниже я расскажу, как использовать всю мощь R в Azure – от создания прототипа до публикации готовой модели в Azure Machine Learning.
Читать полностью