|
Какой рейтинг вас больше интересует?
|
Главная /
Каталог блоговCтраница блогера Zealint/Записи в блоге |
Блочный метод Гаусса для обращения матрицы
2012-05-27 19:49:04 (читать в оригинале)В конкурсе по обращению матриц можно было использовать блочный метод Гаусса, который даёт достаточно ощутимое ускорение. Описание этого метода я решил сделать в новой социальной сети для математиков, так как там можно использовать привычный TeXовский вариант записи формул.
Остаток от деления на 2s-1
2012-04-24 20:57:16 (читать в оригинале)При программировании на старых процессорах, на которых операции умножения и деления чисел выполнялись медленно, программисты прибегали к трюкам, позволявшим ускорить вычисления. Так, битовый трюк, позволяющий получить остаток от деления на число, равное точной степени двойки, остаётся актуальным и сейчас. Операция типа a&((1<<s)−1) всё ещё работает быстрее обычного деления (в том случае, когда компилятор не имеет возможности выполнить соответствующую оптимизацию). Но с тех времён забытым остался трюк, позволяющий похожим набором операций заменить вычисление остатка от деления на число, на единицу меньшее степени двойки. Рассмотрим, как он работает.
Остаток от деления на 2s-1
2012-04-24 20:57:16 (читать в оригинале)При программировании на старых процессорах, на которых операции умножения и деления чисел выполнялись медленно, программисты прибегали к трюкам, позволявшим ускорить вычисления. Так, битовый трюк, позволяющий получить остаток от деления на число, равное точной степени двойки, остаётся актуальным и сейчас. Операция типа a&((1<<s)−1) всё ещё работает быстрее обычного деления (в том случае, когда компилятор не имеет возможности выполнить соответствующую оптимизацию). Но с тех времён забытым остался трюк, позволяющий похожим набором операций заменить вычисление остатка от деления на число, на единицу меньшее степени двойки. Рассмотрим, как он работает.
Обратная по модулю матрица — итоги
2012-04-18 14:09:36 (читать в оригинале)Конкурс по обращению матрицы завершён. Победителем объявляется неоднократный участник моих конкурсов alexBlack.
Обратная по модулю матрица — итоги
2012-04-18 14:09:36 (читать в оригинале)Конкурс по обращению матрицы завершён. Победителем объявляется неоднократный участник моих конкурсов alexBlack.
Категория «Истории»
Взлеты Топ 5
|
| ||
|
+1120 |
1146 |
не задают вопросов о причинах желания |
|
+1071 |
1156 |
Azizti |
|
+996 |
1206 |
@дневники: ~ Mikeko ~ - Пусть все думают, что было так! :) |
|
+915 |
936 |
bigmir)net :: персональный дневник :: ISE-LADI |
|
+909 |
932 |
Robin_Bad |
Падения Топ 5
|
| ||
|
-1 |
99 |
ClericDade |
|
-2 |
103 |
radulova |
|
-5 |
13 |
_123_ |
|
-6 |
22 |
Sebastian_Valmont |
|
-6 |
30 |
_Kicker_ |
Популярные за сутки
Загрузка...
BlogRider.ru не имеет отношения к публикуемым в записях блогов материалам. Все записи
взяты из открытых общедоступных источников и являются собственностью их авторов.
взяты из открытых общедоступных источников и являются собственностью их авторов.

