![]() ![]() ![]()
Какой рейтинг вас больше интересует?
|
![]()
Контактный пост – 42012-11-19 18:12:00 (читать в оригинале)Поскольку блог пока что живет в режиме вопросов-ответов, открываю новый контактный пост. Как всегда, прошу принимать во внимание мои пожелания по поводу вопросов. Исследовательские работы для школьников2012-10-26 18:53:00 (читать в оригинале)В контактном посте меня попросили предложить какие-нибудь темы исследовательских работ, которые могли бы выполнить школьники без спецоборудования, с помощью приборов, которые можно найти в обычном школьном кабинете физики. И мне захотелось ответить отдельным постом. ее сайт, который не обновлялся, по-моему, с 2001 года (и в котором стоит кодировка KOI-8). Среди мероприятий, которые проводились в рамках нее, были и исследовательские задачи для школьников. Происходило это так: ребятам предлагалось несколько задач, они разбивались на команды, примерно месяц над этими задачами работали (как теоретически, так и экспериментально), а потом на Турнирах Юных Физиков происходила «битва решений». Точнее, не решений даже, а подходов — задачи это были такие, что у них не было какого-то одного «правильного» решения, это были скорее темы для исследований. Так что я решил тут собрать вместе, с одной стороны, то, что вспоминается с тех времен, и с другой стороны, что мне уже сейчас приходит в голову в качестве возможных тем. И сразу пара общих замечаний:
Механика
Если у кого еще есть интересные предложения, поделитесь в комментариях. Контактный пост – 32012-09-30 03:31:00 (читать в оригинале)Предыдущий контактный пост переполнился, поэтому открываю новый пост для вопросов и связи. Перед тем, как задать вопрос, обратите, пожалуйста, внимание на мои пожелания. Про открытие хиггсовского бозона2012-07-04 23:57:00 (читать в оригинале)Для тех, кто волнуется, почему нет комментариев про сегоднящнее открытие бозона Хиггса. Там всё в порядке, не беспокойтесь. У меня тут так всё совпало, что прямо в этот день я уезжаю (уже уехал :)) и буду без инета несколько дней. Поэтому я пока отписался очень кратко на «Элементах», а подробная новость будет потом. Вкратце, есть по 5 сигм в каждом из двух детекторов, так что это уже официально открытие. Некоторые, конечно, осторожничают и говорят, что это открытие какой-то там частицы, необязательно бозона Хиггса, но подавляющее большинство физиков высоких энергий уверено, что это действительно бозон Хиггса — уже слишком хорошо всё сходится друг с другом. Другой вопрос — стандартный ли это Хиггс или нет. Вот это сейчас будет очень горячая тема (хотя, казалось бы, куда уж горячее). Так что да, начинается новая эра в физике элементарных частиц. Желающие могут посмаковать подробности из оригинальных докладов и поугадывать будущее развитие ситуации. Механическая модель коллайдера2012-04-24 02:35:00 (читать в оригинале)Год назад, в рамках фестиваля «Весна науки», который ежегодно проходит в Льеже, мы с женой сконструировали механическую модель коллайдера элементарных частиц. Это очень простая модель, в которой катаются, сталкиваются и разлетаются металлические шарики. Но с помощью нее можно продемонстрировать с десяток физических явлений, которые происходят в реальных ускорителях и детекторах. Демонстрация модели школьникам шла на ура, они после объяснений сами лезли запускать шарики и регистрировать столкновения. Сейчас у меня наконец-то дошли руки до того, чтоб снять ее в действии и рассказать, что интересного можно с помощью нее показывать. | |||
Рис. 1. Общий вид механической модели коллайдера. |
Рис. 2. «Детекторная» часть модели. |
Вот видео, на котором всё это показано в действии. Файл довольно тяжелый, т.к. я загрузил видео в HD, и поэтому лучше смотреть на полном экране (вот прямая ссылка на youtube):
Сопроводительные пояснения (для сравнения см. устройство LHC и устройство типичного современного детектора).
- Инжекция — в настоящих ускорителях частицы вначале предварительно разгоняют до небольших энергий и лишь потом их вспрыскивают (инжектируют) в основное ускорительное кольцо.
- Динамика частиц в ускорителе — циркулируя в кольцевом ускорителе, частицы постепенно теряют свою энергию, а также стремятся расплыться вдоль кольца. В реальных коллайдерах оба этих эффекта компенсирует ускорительная секция, которая отсутствует в этой механической модели.
- Бетатронные колебания — попав в ускоритель, частицы вовсе не ложатся на идеальную траекторию, а колеблются относительно нее в поперечной плоскости. Эти колебания необходимо держать под контролем, чтобы пучок не задел стенки вакуумной камеры. Впрочем, в электрон-позитронных коллайдерах бетатронные колебания с течением времени быстро затухают из-за излучения.
- Столкновения частиц в настоящих коллайдерах происходит внутри детекторов. Вакуумная труба в этих местах очень узкая и тонкостенная, чтобы не мешать разлетаться столкнувшимся частицам. Эти частицы оставляют свои следы в нескольких слоя детектора, и по ним физики восстанавливают картину столкновения. В нашей модели шарики разлетаюся после столкновения, прочерчивая след («трек») на тонком слое песка.
Рис. 3. Пример столкновения. |
- Характеристики треков позволяют кое-что узнать о самом столкновении. Направления треков указывают на точку, в которой оно произошло, а из длин треков можно извлечь энергии шариков — это очень похоже на то, как анализируются результаты настоящих столкновений элементарных частиц. У нас треки часто получаются не сплошные, а в виде отдельных «пикселей», что тоже очень похоже на ситуацию в реальных детекторах. И для пущего сходства треки иногда получаются не прямыми, а заметно закрученными (хотя причины для этого, конечно, разные).
- Паразитные столкновения — и в реальном ускорителе, и в этой модели далеко не каждое столкновение регистрируется детектором. Если после столкновения частицы не приобрели достаточно большого поперечного импульса, то они «улетают в трубу», и детектор их не видит. При анализе реальных столкновений надо всегда помнить про эти процессы.
- Угловое распределение — даже если бы начальные состояния реальных сталкивающихся частиц были точно известны, результат каждого конкретного столкновения предсказать нельзя, это одно из ключевых свойств квантовой механики. Поэтому физики не довольствуются одним столкновением, а повторяют его множество раз и смотрят получившиеся распределения результатов. В нашем случае, это иллюстрируется угловым распределением при повторных столкновениях.
- Сгустки частиц — вероятность столкновения в одной пары частиц в реальных ускорителях ничтожно мала. Поэтому там в каждом направлении циркулирует не одна частица, а целый сгусток из миллиардов частиц.
- Эффект нагромождения (pile-up) — когда количество частиц в сгустке достаточно велико, при одном столкновении сгустков может произойти сразу несколько независимым столкновений частиц. Результаты столкновения нагромождаются в детекторе друг на друга, и из анализ становится непростой задачей. Здесь можно заметить, что направления треков четко указывают на то, что произошло несколько столкновений в разных точках.
Рис. 4. Пример столкновения «сгустков» из нескольких шариков. |
- «Мертвое время» детектора — детектору всегда требуется некоторое время на то, чтобы «считать» треки, передать данные в компьютер и очистить детектор. Во время этого процесса детектор не готов воспринимать новые частицы. Это «мертвое время» детектора влияет на его быстродействие.
Технические подробности
Если кто-то захочет самостоятельно сделать подобную модель, то вот несколько замечаний и советов.
1) Самая сложная в изготовлении часть — это труба. Мы заказывали ее в фирме, которая как раз гнет трубы из плексигласа. Главная трудность — сделать так, чтоб внутренняя поверхность была гладкой и ровной, без морщин. При таком соотнощении радиуса трубы и радиуса закругления это оказалось не так уж и просто, фирма сделала это вовсе не с первой попытки. Для примера выкладываю чертеж трубы с параметрами, которые я запросил у фирмы. Можно, конечно, сделать трубу из чего-то другого, надо только убедиться, что материал достаточно жесткий — иначе шарик не будет долго катиться (на нашей модели он делает 3-4 оборота, это достаточно для демонстрации).
![]() |
Рис. 5. Чертеж трубы из плексигласа. |
2) В окрестности места столкновений труба должна быть максимально плоской, чтобы позволить частицам вылетать вбок без подпрыгивания. Поэтому центральная секция у нас выполнена в виде металлической вставки, которая вначале повторяет кривизну трубы, а к центру распрямляется. Поскольку нереально просчитать заранее все параметры, надо дать себе свободу действий для настройки этой секции. Кроме того, надо сделать так, чтобы на месте стыка трубы и вставки не было ступеньки.
3) Опять же, трудно заранее просчитать, под каким углом и с какой скоростью шарики должны влетать в трубу, чтобы попасть на хорошую траекторию и не вылететь в центральной секции. Здесь тоже надо предоставить себе свободу маневров, как по высоте, так и по углу. Мы использовали для этого липучки-велкро на концах желобов, на их держателе, и на окошках трубы.