Antifraud Insights». Часть 4
В заключительной четвертой части статьи подробно обсудим наиболее сложную с технической точки зрения часть antifraud-сервиса – аналитическую систему распознания мошеннических платежей по банковским картам.
Выявление различного рода мошенничеств является типичным кейсом для задач обучения с учителем (supervised learning), поэтому аналитическая часть антифрод-сервис будет построена одном из алгоритмов машинного обучения.
Для стоящей перед нами задачи воспользуемся Azure Machine Learning – облачным сервисом выполнения задач прогнозной аналитики (predictive analytics).
Для понимания статьи Вам необходимы будут базовые знания в области машинного обучения и знакомство с сервисом Azure Machine Learning.
Что уже сделано? (для тех не читал предыдущие 3 части, но интересуется)
В первой части статьи мы обсудили, почему вопрос мошеннических платежей (fraud) стоит так остро для всех участников рынка электронных платежей – от интернет-магазинов до банков – и в чем основные сложности, из-за которых стоимость разработки таких систем подчас является слишком высокой для многих участников ecommerce-рынка.
Во 2-ой части были описаны требования технического и нетехнического характера, которые предъявляются к таким системам, и то, как я собираюсь снизить стоимость разработки и владения antifraud-системы на порядок(и).
В 3-ей части была рассмотрена программная архитектура сервиса, его модульная структура и ключевые детали реализации.
В заключительной четвертой части у нас следующая цель…
Читать полностью
medianet_width=’600′; medianet_height=’120′; medianet_crid=’711758437 ...
Many people have the exact dream related inventing a new great product, obtaining that patent, and ...
прошлой части мы сфокусировали внимание на функциональных и нефункциональных требованиях ...
прошлой части мы сфокусировали внимание на функциональных и нефункциональных требованиях к антифрод-сервису. В этой части статьи рассмотрим
программную архитектуру сервиса, его модульную структуру и ключевые детали реализации такого сервиса.
Инфраструктура
Сервис представляет собой несколько приложений, работающих в Microsoft Azure. Размещение с использованием облачной платформы вместо on-premise размещения не только позволит при незначительных временных затратах разработать сервис, отвечающий всем требованиям, перечисленным во второй части в разделе «Нефункциональные требования -> Атрибуты качества», но и существенно снизит первоначальные финансовые затраты на аппаратное и программное обеспечение.
Antifraud-сервис состоит из следующих систем:
- Antifraud API Service – REST-сервис, предоставляющий API для взаимодействия с сервисом Fraud Predictor ML.
- Fraud Predictor ML – сервис обнаружения мошеннических платежей, в основе которого лежат алгоритмы машинного обучения.
- Transactions Log (лог транзакций) – NoSQL хранилище информации о транзакциях.
Кроме того, у сервиса имеются многочисленные программные клиенты (Clients), представляющие собой web-приложения мерчантов, либо js-виджеты, вызывающие REST-сервисы Antifraud API Service.
Принципиальная схема взаимодействия этих систем проиллюстрирована ниже.
Читать полностью